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Abstract— Building an autonomous intelligent agent capable
of carrying out web automation tasks from descriptions in
natural language offers a wide range of applications, including
software testing, virtual assistants, and task automation in
general. However, recent studies addressing this problem often
require manually constructing of prior human demonstrations.
In this paper, we approach the problem by leveraging the idea
of reinforcement learning (RL) with the two-phase mechanism
to form an agent using LLMs for automating computer tasks
without relying on human demonstrations. We evaluate our
LLM-based agent using the MiniWob++ dataset of web-based
application tasks, showing that our approach achieves 85%
success rate without prior demonstrations. The results also
demonstrate the agent’s capability of self-improvement through
training.

I. INTRODUCTION

Large language models (LLMs) have the potential in
automating problem-solving systems due to their natural
language comprehension and in-context learning capabilities
[1], [2], [3]. Such models can handle cognitive tasks, such
as devising plans and generating code, which traditionally
required specialized models or certain degrees of human
intervention. Their ability to identify and potentially rectify
errors through appropriate prompt construction also enhances
the robustness and adaptability of autonomous systems [4],
[5]. Recent applications utilizing language models as prin-
cipal components are being rigorously researched, including
game agents [6], web agents [7], embodied agents [8], etc.

The development of intelligent agents capable of solving
computer tasks using LLMs has also gathered substantial
momentum in the research communities [9]. Computer tasks
represented by natural language, from clicking a button to
filling a complex form (Figure 1), could be automated to
improve productivity or to simulate human behaviors for test-
ing purposes. Approaches to this topic can be classified into
three categories [10]: reinforcement learning, fine-tuning-
based methods, and prompt-based methods. Precedent state-
of-the-art prompt-based approaches often require a handful
of human demonstrations (e.g., Synapse [11], AdaPlanner
[12], RCT [13]).

This paper proposes an LLM-based agent to automatically
perform computer tasks given task descriptions without re-
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Fig. 1: Example of computer task performed by the LLMs
agent. At each step, the LLMs agent receives information to
determine the next action, executes it, and updates the state.
This cycle repeats until the task succeeds or fails.
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lying on human demonstrations. Our method uses prompt-
based mechanisms and adopts the idea from verbal reinforce-
ment [4], prioritizing in-context learning via feedback loop,
logic flow, and memory mechanism.

Our method consists of two phases, training and eval-
uation. The training phase concentrates on exploring the
environment, observing patterns, and extracting rules that
are stored in the long-term memory storage. The evaluation
phase uses the memory previously collected to assist the
agent in solving computer tasks.

We evaluate our LLM-based agent using the popular
MiniWob++ dataset [14] of 43 web-based application tasks,
showing that our approach achieves an 85% success rate
without prior demonstrations.

This study provides the following main contributions:

o The use of a verbal reinforcement strategy that incor-
porates the two-phased mechanism and textual rules to
eliminate the need for human demonstrations.

« Employing a token-efficient screen representation to
minimize redundant information.

o Proposing an agent that has the capability of self-
improvement during training by learning success pat-
terns and rules to devise more accurate actions to take
when performing tasks.



II. BACKGROUND AND RELATED WORK
A. Large Language Models

LLMs are deep-learning-based models that are pre-trained
on extensive amounts of data. LLMs are intended to have
an ample capacity for understanding and generating natural
language. With the ability of knowledge-intensive tasks,
LLMs were used to solve computer tasks in recent studies.
Synapse [11] supplies LLMs with successful trajectories and
a current trajectory to make decisions for the current action.
This iterative process is called Trajectory-as-Exemplar (TaE)
prompting. AdaPlanner [12] uses LLMs in planning and
refining its plan by in-plan feedback and out-plan feedback.
Recursive Criticism and Improvement (RCI) [13] starts by
letting the LLMs generate an initial plan, then has it find the
problem with the generated output, and then generates a new
and better one. Synapse, AdaPlanner, and RCI require hand-
crafted feedback or demonstrations, limiting their ability to
handle new or unfamiliar tasks. Li et al.[15] eliminate the
need of demonstrations by applying self-reflection to identify
and learn from mistakes from multiple trials. However, this
refinement strategy is applied for each action without storage.

B. Reinforcement Learning with Large Language Models

With the advent of LLMs, approaches that leverage
common-sense knowledge and effective reasoning abilities
of LLMs within the RL environment have been discussed
and analyzed [16].

Using LLMs as a reward function. With the common-
sense knowledge from massive pre-training data, LLMs
are incorporated into the reward design. Xie et al. [17]
proposed a data-free framework to automatically generate
and shape dense reward functions with the leverage of
LLMs. LESR [18] uses LLMs to create task-related state
representations accompanied by intrinsic reward functions.
Kwon et al. [19] introduces the approach of using LLMs as
a proxy reward function.

Using LLMs as a policy. LLMs are shown to be capable
of acting as RL agents with self-critique ability, which
enables them to discover and correct the errors in previous
outputs. Reflexion [4] has developed a verbal RL approach to
strengthen language agents, focusing on linguistic feedback
rather than weight updates. ReAct [20] combines reasoning
and acting capabilities of LLMs to interact with the environ-
ment.

III. METHOD

Figure 2 illustrates the overview of our autonomous agent.
Given a specific web environment and a task goal in natural
language, the agent aims to generate a sequence of actions
to perform the task. The following sections describe further
details of the proposed method.

A. Shortened DOM Representation

Document Object Model (DOM) presents a document
underlying a web page. It contains information that may
not help determining an action to take. In our approach,
we provide the agent with only interactable DOM elements

that are visible on the screen (Step 1). More specifically, we
extract DOM elements that can be interacted with through
user actions and their relevant surrounding context to be
stored as JSON objects. Figure 3 shows an example of a task,
the current HTML page, and its corresponding JSON objects.
These objects are further attached with their corresponding
operations including clicks and inputs to form a shortened
version of the current DOM. This shortened DOM state is
then used as input for GUI Clickable Describer (Figure 2)
to generate a representation of the shorten DOM in natural
language.

B. Iterative Planning

Upon obtaining the refined representation, our agent per-
forms an iterative planning process (Step 2 to Step 5).
This process leverages the state representation alongside
task requirements to continuously generate actions within a
closed-loop framework until the task is accomplished.

At iteration i, Action Generator T chooses an action a; € A;
where A; is the list of possible actions on the current DOM
state extracted using the GUI Clickable Describer.

ai:ﬂ(Ai,SMi,Si,Ri) (1)

where SM; = ((a;j—1,ai—2,...a9),T) is the previously ex-
ecuted actions (short-term memory) up to iteration i along
with the current task 7', S; is the current set of successful
trials, R; is the current set of rules. S; and R; will be further
described in the next section.

C. Experience Reinforcement

To facilitate the improvement of our agent through iterative
learning, we incorporate a long-term memory module ”Expe-
rience Knowledge”, which archives historical trials and a set
of rules (Step 6 to Step 8). This long-term memory operates
within a two-phased mechanism: the training phase and the
evaluation phase.

1) Training phase: During the this phase, the memory
module updates automatically when the iterative planning
completes its episode. Memory Retriever is responsible for
retrieving essential information to be used as a prompt for
Action Generator in the subsequent iteration.

Algorithm 1 discusses in detail the above idea. The
triplet (S,F,R) constitutes the system’s long-term memory.
Generally, if the agent’s episode is successful, we append
it to the set of few-shot examples for the agent’s future
usage as LLMs are capable of following patterns with the in-
context learning capability (lines 1-3). The failed attempts,
while not being used explicitly so as to prevent LLMs from
being incentivized to follow wrong patterns, are used to
extract textual rules expressed in natural language (e.g., avoid
clicking on unrelated elements) to assist the agent in its
subsequent episodes (lines 4-7).

During the training phase, S; and R; are dynamically
updated after the agent finishes a task. Additionally, we keep
track of the average of the correct episodes over a specified
number of recent episodes during the training phase (called
moving average), which is used to determine the optimal
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Fig. 2: Overview of our proposed method.
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Fig. 3: Task goal, HTML page (a), and JSON objects
representing a shortened version of the page’s DOM (b)

combination of successful trials and rules for the agent in
the evaluation phase.

2) Evaluation phase: In the evaluation phase, the mem-
ory module remains fixed, and we solely rely on Memory
Retriever to retrieve the most optimal successful trials and
rules, which exhibit an upward trend and stable accuracy
from the training phase, decided by the moving average.
Currently, the optimal sets are manually selected based on
human observation, without building demonstrations from
scratch in comparison with other prompt-based approaches.
The iterative planning algorithm remains the same but uses
a fixed optimal set of successful trials and rules, which serve
as part of the prompt for Action Generator T.

a; = ”(AtaSMlaSoptimalaRoptimal) ()

3) Rule extraction: As mentioned in III-C.1, we utilize
Rule Extractor equipped with LLMs to deduce a set of
textual rules by feeding them with a set of successful and
failed trials. The intuition behind this approach is to apply a
higher level of abstraction to LLMs, which has been shown
effective in [21]. This behavior is also natural, as humans

Algorithm 1 Experience Reinforcement Algorithm

Input: short term memory SM of the current episode,
success status isSuccess, current set of success trials S;_i,
current set of failed trials F;_;, current set of rules R; i,
rule extraction agent Y

func ExperienceReinforce

1: if isSuccess(SM) then

2 S,'ZS,'_lU(SM)

3 F=F_

4: else

50 §=8_

6 F=F_ U(SM)

7. Ri=Ri1UY(S;,F,Ri-1)
8: end if

9: return S, F, R

tend to learn from reasons why they fail in addition to
failures.

IV. EXPERIMENT
A. MiniWoB++ dataset

We conducted the experiment on the MiniWoB++ dataset
[14], which contains a collection of over 100 web interaction
environments. Each environment is specifically defined for a
task, consisting of a description (e.g., Choose an item from
a drop-down list), a set of utterances (e.g., Bobine, Betty)
that will be randomly chosen for every episode to form a
complete natural language task (e.g., Select Betty from the
list and click Submit). Figure 1 demonstrates an example in
the MiniWoB++ dataset.

Due to the equivalent comparison to other approaches, we
only selected a subset of tasks (43 tasks) and classified them
into two categories: 1) 1-State tasks: 29 tasks that perform
actions without changing the state, typically easy tasks; 2)



Parameters | Training Evaluation
#episode [20, 150] 25
#success_trials 8 8

#rules 3 3
#trials_extract_rule | [2, 6] N/A

TABLE I: Training & Evaluation phase hyper-parameters.

N-State tasks: 14 tasks that perform actions that can change
states (e.g., expanding drop-down, opening a hidden tab).
The reason for classifying these tasks is to assess the
exploration capability of LLMs agents. The former category
is simple and deterministic, while the latter requires an
adaptive plan when the state changes after a certain action.

B. Evaluation

We use the success rate (SR) [22] as the evaluation
metric. It is used to evaluate the method’s performance by
other methods [7], [12], [13], [15], [23]. This metric is
calculated as the proportion of successful episodes over the
total executed episodes. An episode is considered successful
if it receives a positive reward, and failed if it either receives
a negative reward or exceeds a specified step limit.

C. Setup

The detailed setup for each training and evaluation phase
can be found in Table I. We first train the agent to run
between 20 and 150 episodes for a task. Notably, the number
of episodes varies during the training phase due to a stopping
criterion. Then, we run 25 episodes in the evaluation phase
to align with Li ef al.’s results. The number of textual rules
that are being used is 3, which was deduced from 2 to 6
successful/failed trials during the training phase. Moreover,
the trials needed to extract rules are not available in the
evaluation phase as we do not extract rules in this phase.

D. Model comparison

We use the InstructGPT-3 + RLHF (gpt3.5-turbo-1106)
model via the OpenAl API for all agent operations and
conduct experiments on a shared set of tasks. The Li et al.
approach [15] employs FLAN-PaLM2 L [24], which is a
proprietary LLM, making direct comparison difficult. For the
supervised learning and RL approaches, we selected WebN-
TS5 [25] and CC-Net [23], as they represent the best methods
within their categories.

E. Results

The performance of our method for each category of
tasks, compared with other baseline methods is reported in
Table II. Incorporating a training phase before the evalua-
tion phase boosts the average success rate across all tasks
by 10%, with the most significant improvement observed
in N-State tasks rather than 1-State tasks. Moreover, we
outperform WebN-T5-3B by 28%, a model that fine-tunes
the encoder-decoder architecture on 12K human-annotated
demonstrations. Our method performs lower than CC-Net
(RL+SL) by 11%. However, it is important to note that
CC-Net benefits from 2.4M expert demonstrations sourced

Avg. Success Rate

Method Category

1-State  N-State  Total
WebN-T5 SL 0.74 0.29 0.57
CC-Net RL + SL 0.96 0.97 0.96
RCI Prompt-based 0.97 0.89 0.95
AdaPlanner Prompt-based 0.97 0.90 0.95
Li et al. Prompt-based 0.98 0.86 0.94

Ours (w/o training)
Ours (w/ training)

Prompt-based 0.81 0.59 0.74
Prompt-based 0.85 0.87 0.85

TABLE II: Performance comparison with other methods.
The Category column shows the methods classified into
Supervised Learning, Reinforcement Learning, or Prompt-
based with LLMs.
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Fig. 4: Relationship between the success rate and amount of
total expert training data.

from 77 human participants for supervised learning. Addi-
tionally, our performance is 10% lower than that of RCI and
AdaPlanner. These prompt-based approaches leverage prior
hand-crafted demonstrations, including step-by-step plans,
in either plain text or code format as few-shot examples
for a task. Although our approach yields lower results, it
eliminates the reliance on expert demonstrations. For prompt-
based approaches without demonstrations, Li et al. achieves a
remarkable 94% success rate without exemplars, employing
the FLAN-PaLM2 L model and structured reflection. A
significant performance gap of 13% is observed in 1-State
tasks, which will be further discussed in the next section.
1) Performance on I-State tasks: Figure 5 illustrates the
performance of our method on 1-State tasks. Overall, our
agent achieves a 1.00 success rate in 76% of tasks, even
without a training phase, where the agent plans without any
history of successful trials and rules. However, ambiguity
exists in two tasks, namely click-widget and click-dialog-2.
For instance, in the task ”Click the button in the dialog box
labeled °x’” of click-dialog-2, the button ’x’ is represented in
the HTML code as <button ... title="Close”>. Similarly, the
requirement to click on the “text” and “text area” widgets
in the task click-widget is also ambiguous for the agent.
These issues are resolved by incorporating successful trials
and rules, resulting in a 1.00 success rate for our agent. The
76% of tasks achieve a 1.00 success rate also indicates why
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in prompt-based methods.

the gap between performance with and without training is
not significant in the 1-State task. Additionally, we observe
two main failures of our agent, which contribute to the
significance gap in success rate compared to the prompt-
based state of the art: (i) handling long trajectories (e.g.,
click-scroll-list, click-checkboxes-large) that require multiple
steps, and (ii) mathematical reasoning (e.g., social-media-all,
social-media-some) where the agent has to count and keep
track of the number of items on the web state.

2) Performance on N-State tasks: Figure 6 shows how
our method performs on more challenging tasks that re-
quire our agent to adapt its plan to state changes. In the
first two tasks, our agent performs well in both settings,
with performance improvement observed in the click-menu-
2 and click-pie due to experience knowledge. However, our
agent struggles significantly in the last six tasks, which
involve multiple states (e.g., multiple sections/tabs/screens)
within the tasks. After gaining experience knowledge from
the training phase, the success rate increases considerably
due to successful patterns and rules, minimizing negative
failures. Exceptionally, search-engine requires a high level
of reasoning to search for ordinal elements (1%, ond, etc.)
scattered across multiple pages. This task demands the agent
to understand both the mathematical positions and how to
explore through pages. Consequently, our agent’s capability
is unable to solve this task in all cases, resulting medium
score compared with Prompt-based SotA.

3) Training phase analysis: Figure 7 demonstrates the
moving average of the correct episodes over a specified
number of 25 episodes during the training phase. The x-
axis shows the number of episodes that were run. When
tasks perform well even without prior training, the training
phase is observed to have a good initial start, reaching
a stable maximum reward with the minimal number of
episodes. However, with more challenging tasks, the agent
either improves through the knowledge it obtains during the
training phase or fluctuates otherwise. It also proves that
the significant gap in the evaluation phase is due to the
improvement over the training phase of our agent (from 7c to
7e), otherwise, the agent is either good enough from the start
(7a and 7b), or can not obtain good experience knowledge
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during training (7).

4) Ablation study: To further investigate the contribution
of the experience combined of success trials and rules, we
conduct an ablation study where we intentionally omit either
success trials or rules in the evaluation phase. The tasks
involved in this ablation study are those whose results in low
performance when running pure iterative planning without
training, which includes all of the N-State tasks and some
of the 1-State tasks. Tasks can be handled with ease even
without any examples or rules; such tasks cannot be used to
demonstrate the influence of examples and rules, and thus
excluded in the ablation study.

Figure 8 illustrates the performance of our agent for the
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Fig. 8: Ablation study on success trials and rules.



ablation study. It can be observed that our agent is indeed
better at following patterns presented in examples than
following rules in natural language, and that the combination
of both offers a noticeable performance boost of 34% success
rate in our agent’s performance compared to applying neither.

V. LIMITATION

Getting LLMs to understand DOM representations, with
all of the nuanced features of the scripting language and the
underneath JavaScript, is challenging. Our current approach,
while prioritizing token efficiency by using interactable el-
ements, assumes that all needed contextual content is in a
close proximity relative to these elements. Our approach
also relies on descriptions of user interface elements. Our
iterative planning process does not handle live events like
pop-up modals or loading screens, assuming instead that
website changes occur solely from our actions and update
instantly. This contrasts with real-world websites, which
often involve client-server communication, background tasks,
and animations. Finally, a more robust governance over the
long-term memory should be applied. Further research is
needed in determining good and bad examples/rules for
LLMs as well as a mathematical formation to select the most
promising set of examples/rules. Moreover, there is also a
reasoning limitation within LLMs.

VI. CONCLUSIONS

In this paper, we have proposed a two-phase mecha-
nism utilizing the idea of self-reflection to design an au-
tonomous agent that solves computer tasks without prior
expert demonstrations. Our experiments on the MiniWoB++
dataset demonstrated that our method exhibits an 85%
success rate without prior human-annotated data compared
to supervised learning, reinforcement learning, and other
prompt-based approaches. Furthermore, we showed that the
LLM-based agent can potentially self-improve from the
training phase by exploring the state and obtaining useful
information. Ablation study on both rules and success trials
also showed the effectiveness of each component during the
evaluation phase. However, there are still certain limitations
of the agent in planning and reasoning which require further
work to be done in future research.
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