
Segment-Based Test Case Prioritization: A Multi-objective
Approach

Hieu Huynh
Katalon Inc

Ho Chi Minh city, Vietnam
hieu.huynh@katalon.com

Nhu Pham
Katalon Inc

Ho Chi Minh city, Vietnam
University of Science, VNU-HCM

Ho Chi Minh city, Vietnam
nhu.pham@katalon.com

Tien N. Nguyen
University of Texas at Dallas

Texas, USA
tien.n.nguyen@utdallas.edu

Vu Nguyen
Katalon Inc

Ho Chi Minh, Vietnam
University of Science

Ho Chi Minh city, Vietnam
Vietnam National University
Ho Chi Minh city, Vietnam
nvu@fit.hcmus.edu.vn

Abstract
Regression testing of software is a crucial but time-consuming task,
especially in the context of user interface (UI) testing where mul-
tiple microservices must be validated simultaneously. Test case
prioritization (TCP) is a cost-efficient solution to address this by
scheduling test cases in an execution order that maximizes an objec-
tive function, generally aimed at increasing the fault detection rate.
While several techniques have been proposed for TCP, most rely on
source code informationwhich is usually not available for UI testing.
In this paper, we introduce a multi-objective optimization approach
to prioritize UI test cases, using evolutionary search algorithms and
four coverage criteria focusing on web page elements as objectives
for the optimization problem. Our method, which does not require
source code information, is evaluated using two evolutionary algo-
rithms (AGE-MOEA and NSGA-II) and compared with other TCP
methods on a self-collected dataset of 11 test suites. The results
show that our approach significantly outperforms other methods in
terms of Average Percentage of Faults Detected (APFD) and APFD
with Cost (APFDc), achieving the highest scores of 87.8% and 79.2%,
respectively. We also introduce a new dataset and demonstrate the
significant improvement of our approach over existing ones via
empirical experiments. The paper’s contributions include the appli-
cation of web page segmentation in TCP, the construction of a new
dataset for UI TCP, and empirical comparisons that demonstrate
the improvement of our approach.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA ’24, September 16–20, 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0612-7/24/09
https://doi.org/10.1145/3650212.3680349

CCS Concepts
• Software and its engineering→ Software testing and debug-
ging.

Keywords
Test case prioritization, multi-objective optimization
ACM Reference Format:
Hieu Huynh, Nhu Pham, Tien N. Nguyen, and Vu Nguyen. 2024. Segment-
Based Test Case Prioritization: A Multi-objective Approach. In Proceedings
of the 33rd ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA ’24), September 16–20, 2024, Vienna, Austria. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3650212.3680349

1 Introduction
Regression testing is a process performed each time a new version
of the software is released to ensure the quality of the software
under test. The test suite is usually reserved for testing later releases
as the software evolves. Running these test suites consumes a lot of
time and can account for half the cost of software maintenance [31].
As for UI testing, the cost is even higher as a web application is a
combination of many services. Each interaction on the web page
is involved with multiple services. In order to test the behaviour
as well as the interactions between components of the web page,
multiple services should be validated in one test and the verdict for
the test is failed if one of the microservices is failed and vice versa
[35]. For large test suites, testers may want to prioritize some test
cases with the highest priority first so that the faults are detected
sooner and hence, the bugs can be fixed sooner. In such cases, test
case prioritization (TCP) is leveraged.

Test case prioritization schedules test cases in an execution order
that maximizes an objective function [31]. An objective may be
chosen accordingly to what testers want to prioritize during testing
process. One common objective of TCP is to increase the rate of fault
detection, which is equivalent to revealing defects sooner in testing
procedure. Thanks to that, developers can identify and fix bugs

ar
X

iv
:2

40
8.

00
70

5v
1

 [
cs

.S
E

]
 1

 A
ug

 2
02

4

https://orcid.org/0000-0003-2310-1376
https://orcid.org/0009-0009-7643-6250
https://orcid.org/0009-0006-7962-6090
https://orcid.org/0000-0002-0594-4372
https://doi.org/10.1145/3650212.3680349
https://doi.org/10.1145/3650212.3680349

ISSTA ’24, September 16–20, 2024, Vienna, Austria Huynh et al.

sooner. Initially, TCP may seem less critical for small test suites,
as random execution can be convenient and equally effective [31].
However, for time-consuming test suites, TCP proves cost-efficient
by prioritizing a subset of test cases over the entire suite while
aiming to achieve objectives. TCP gains greater significance in UI
testing, where tests often take more time than unit tests. Automated
UI testing, being black-box, requires no knowledge of source code
or application architecture [35].

There are several techniques introduced to TCP. Search-based
is the most utilized approach. Each permutation of test cases is
considered a candidate solution and the optimal solution should
be discovered heuristically [18] based on coverage information.
Coverage-based [4, 10, 19, 31] and history-based [15, 28, 33] tech-
niques are also among the most popular approaches and show
effectiveness despite being coined long ago. Coverage-based ap-
proaches aim to cover target items as many as possible in the hope
that a higher coverage would result in a higher probability of fault
exposure. However, most coverage-based techniques need source
code information (statements, functions, branches) while all this
information is usually not available for UI testing. History-based
approaches use the verdicts from past cycles and need many runs
to yield good results [25]. Similarity-based approaches are another
set of methods that demonstrate their effectiveness [9, 24]. These
approaches focus on prioritizing test cases that differ from the al-
ready prioritized ones, emphasizing the diversity of test cases. Yu
et al. [35] introduced a UI testing method, excluding the need for
source code. It relies on test case descriptions and historical data for
prioritization, utilizing an SVM model trained with active learning
to prioritize test cases for failure detection. However, optimal per-
formance requires multiple runs, gaining knowledge incrementally
with each new executed test case.

In this paper, we model test case prioritization for UI testing
as a multi-objective optimization problem, employing web page
segmentation techniques. Intuitively, elements of the same level
from same segments (referred to as siblings) are likely to encounter
similar errors since they share the same functionality. Hence, we
do not necessarily prioritize all test cases that test the function
of siblings of elements from prioritized test cases. Based on that
intuition, we introduce four coverage criteria focusing on objects
and segments as objectives for the optimization problem and use
evolutionary search algorithms to search for the optimal permuta-
tion. Different from other coverage-based approaches, our method
does not rely on source code information but web page elements
(buttons, links, etc.). Thus, it falls into the category of black-box
TCP methods, which are more suitable in UI testing scenarios.

We conducted experiments to evaluate our methods using two
backbones (AGE-MOEA [27], NSGA-II [7]), along with other TCP
methods, on a real-world dataset comprising 11 test suites. The
results demonstrate that our top-performing model, AGE-MOEA,
outperforms all compared methods, achieving the highest Average
Percentage of Faults Detected (APFD) and APFD with Cost (APFDc)
at 87.8% and 79.2%, respectively. Statistical tests further substantiate
the significant improvements our approach offers over other meth-
ods. These findings suggest that adopting multi-objective prioriti-
zation and our new coverage criteria produces better performance
in prioritizing UI test cases.

In this paper, we make the following primary contributions:

Figure 1: An example of a PHPWeb application. , , and
denote button ’details’, ’edit’, and ’print’, respectively.

(1) Introduction of a multi-objective optimization approach for
prioritizing UI test cases, emphasizing the diversification of
segments and objects within test cases. For the first time,
Web Page Segmentation is applied in the context of UI TCP.

(2) Construction of a new dataset of 9 subject systems with
11 test suites for the UI test case prioritization, covering a
diverse range of test frameworks and frontend frameworks.

(3) Execution of an empirical experiment covering various as-
pects, wherein we compare our proposed approach to other
state-of-the-art methods. The results demonstrate a signifi-
cant improvement in the effectiveness of our approach.

2 Motivation
2.1 Examples and Observations
Let us use a real-world Web application to illustrate the problems
and motivate our approach. Figure 1 shows the main page of an
address book Web application written in PHP. The website allows
users to edit, print, and view the details of any address record. Users
can select a record and send an email to a person. It also enables
them to navigate to other pages via menu buttons.

From the example, we make the following observations.

Observation 1 [Regions in a web page]. A web page often contains
different regions with respect to their functionality.

For example, the web page from Figure 1 can be divided into 3
regions according to their functional behavior and similarity (as
presented by the green boxes). Region 1 presents the navigation
menu of the application. Region 2 is for the information panel,
providing a comprehensive display of pertinent content. Lastly,
Region 3 is designated for action buttons, allowing users to execute
specific tasks or commands with the selected records.

Although current UI testing prioritization methods [35] have
achieved some success, their scope is constrained when it comes
to comprehensively addressing and diversifying various sections
within a web page. These methods adopt an approach that treats
all objects equally when prioritizing test cases. This may result in
scenarios where a test case covering numerous objects is given a
higher rank, even if those objects are all part of the same region
with similar functions, thereby leaving other regions untested.

Segment-Based Test Case Prioritization: A Multi-objective Approach ISSTA ’24, September 16–20, 2024, Vienna, Austria

Table 1: A sample test suite for Address Book Application.
The number inside the parentheses indicates the index of
the line in table (e.g. (1) is for button ’details’ on the first
line). For the sake of visualization, we only present the test
objects visible in Figure 1.

Test Case Test objects No. Objs No. Segs
TC1 (1) (2) (3) (1) (2) (3) 6 1
TC2 (1) (1) (1) ’Select all’ ’Send Email’ ’export’ 6 3
TC3 ’home’ ’add new’ (1) ’Checkbox’ (1) ’Send Email’ 5 3

Observation 2 [Behavior of elements in the same region]. In the same
region, some Web elements share the same behavior.

1 ...
2 <td>Chris Evans</td>
3 ...
4 <td>
5 <button onclick="edit (1)">Edit</button >
6 </td>
7 ...
8 <td>Thomas Edinson </td>
9 ...
10 <td>
11 <button onclick="edit (2)">Edit</button >
12 </td>
13 ...
14 <td>Thor Odinson </td>
15 ...
16 <td>
17 <button onclick="edit (3)">Edit</button >
18 </td>
19 ...

Listing 1: A snippet of HTML code for the table in Figure 1.

Examine the HTML representation of the table in Listing 1, and
observe that the recurring ’edit’ buttons share identical functional-
ity (invoking the ’edit()’ function with an ID parameter) whenever
a click action is triggered on them. If the ’edit’ function is inadver-
tently modified, test cases associated with this button may fail or
exhibit unexpected behavior. In such cases, fixing one function may
result in the success of multiple test cases. Likewise, the ’details’ and
’print’ buttons are likely to follow the same behavior pattern. Many
web pages adopt this strategy, where UI components in a particular
section exhibit consistent behavior. In such cases, testing a single
representative element may be wise, allocating testing resources to
diversify test cases for other elements with distinct behaviors.

The state-of-the-art test case prioritization approaches have not
taken into account the similarity in behavior of the test objects in
the same region. This could lead to the scenario that the test cases
cover the objects that have been tested.

As an illustration, consider Table 1, which exhibits a test suite
example for the Address Book application. In this scenario, algo-
rithms such as Greedy Additional [18] and Greedy Total [18], which
exclusively rely on UI objects, assign the following ranking to the
test cases: {TC1, TC2, TC3}. This ranking is determined by the count
of test objects covered in each case. Notably, Test Case 1 (TC1) at-
tains the highest ranking due to encompassing the most extensive
array of test objects. However, it’s crucial to note that the functions
underlying these test objects overlap, resulting in the testing of
only two distinct functions. In contrast, Test Case 2 (TC2) or Test
Case 3 (TC3) may be more effective in uncovering bugs since they
span a broader array of distinct regions.

2.2 Key Ideas
Based on the above observations, it can be seen that an effective test
case prioritization method should not only take into account object
coverage but also consider region coverage. This entails the ability
to differentiate web objects across various regions. Additionally,
the approach should be designed to circumvent scenarios where
distinct objects share identical underlying functionality. We draw
from the observations the following key ideas:

Key Idea 1: Segmentation-based Objective. Our test case prioritiza-
tion strategy considers region coverage in which the UI objects
share the same or similar groups of functionality.

Key Idea 2: Multi-Objective Test Case Prioritization. Rather than
simply maximizing UI object coverage, we consider multiple objec-
tives in test case prioritization including, diversifying test objects,
covering a variety of object types (e.g., button, a tag, checkbox,
input, etc.), and testing objects with similar parent structures.

Key Idea 3: Object with the same behavior. We diversify the object
coverage with different underlying functionality to avoid redundant
testing of similar functionalities.

In the Address Book example, instead of focusing solely on cov-
ering all the ’edit’ buttons (which invokes the same function), we
prioritize test cases that also cover the ’details’ and ’print’ buttons,
which likely exhibit different behaviors. This multi-objective ap-
proach ensures a wider range of test scenarios while efficiently
covering different objects.

The test cases that test the rows of the table with the same
underlying functionality will not be put in priority. For example, in
the sampled test suite in Table 1, instead of prioritizing test cases on
the multiple rows based on the number of objects covered, we also
consider the diversity of regions and underlying functions. A multi-
objective prioritization method would rank TC2 or TC3 higher than
TC1, as they test more diverse aspects of the application and are
likely to reveal more unique bugs across different regions.

3 Segment-based Test Case Prioritization
In this section, we present our proposed method for the TCP prob-
lem using a multi-objective optimization approach.

Our primary concept involves prioritizing test cases to maximize
coverage rates on four key subject objectives: segment, sibling,
object type, and object. To achieve this objective, we employ a
multi-objective optimization approach utilizing genetic algorithms.
Similar to other TCP methods, our approach takes the test suite
as input and produces an optimal execution order. This process
involves twomain steps: coverage information extraction andmulti-
objective optimization, which are visualized by Figure 2.

3.1 Coverage Information Extraction
As a coverage-based approach, we require coverage information
of object and segmentation. As for object information, we need
to know the list of interacting test objects for each test case. Each
object information will have the information of the absolute XPath,
object type (or tag name), and enclosing segment. Since the test
suite alone does not provide sufficient information for this step, we

ISSTA ’24, September 16–20, 2024, Vienna, Austria Huynh et al.

Web Page
Segmentation

Test Coverage
Information Extraction

Multi-objective
Optimization

Segment and extract in
the first run and can be reused

TC1
TC11. Click 'Home' btn.

2. Type 'abc' in 'Search' input.
3. Click 'Add to cart' btn

TC1
TC1

TC11. (Obj1, Seg1)
2. (Obj2, Seg1)
3. (Obj3, Seg2)

TC1

Ordered Test Suite
(e.g. {TC2, TC1, TC3})

Figure 2: Overview of Segment-based Test Case Prioritization Method

Initial Population

Meet Termination
Criteria?

Fitness Evaluation

Selection

Crossover Mutation

Reinsertion

Figure 3: Overview of our genetic algorithm

need to execute the test script to get coverage data and perform
web page segmentation to get segmentation data.

Definition 3.1. (Segment) A segment in a web page is a region
that contains elements that have similarities in structure [12]. A
segment is represented as a DOM subtree.

Recapitulating Web Page Segmentation: Web page segmentation
involves breaking down a web page into distinct and meaningful
sections based on various factors such as layout, content, and struc-
ture. We apply a DOM-based web page segmentation approach [12]
to get segmentation information for each test state. This approach
takes the DOM tree of a web page as input and returns a list of DOM
nodes representing the segments in that web page. This approach
has demonstrated impressive results on a dataset of nearly 2000
real-world web pages.

While executing test cases, we inject the code to watch the
test actions (e.g. click, type, trigger, keyboard shortcut, etc.) and
changes in the HTML representation of the current app under test.
Whenever an action is performed, we save the interacted HTML
element with information on the URL of the current page, the
object’s XPath, the object’s type, and other attributes. At the same
time, we also perform web page segmentation to get the enclosing
segment of the current test object.

As a result, for every test case, we got the coverage information
as a list of test objects associated with their containing segment.

3.2 Overview of Multi-objective Optimization
Genetic Algorithms (GenA) have been utilized in prior work in
the scope of TCP and TCS (Test Case Selection). Figure 3 shows
a general process of a single-objective GenA, which includes six
main steps. GenA begins by randomly generating a group of indi-
viduals, each with a unique sequence of parameters known as a

chromosome. The chromosome represents a potential solution to
the problem at hand. The initial population is then evaluated for
their "fitness" using a specific function designed to measure how
well they solve the problem. A subset of the fittest individuals is
then selected to act as parents for the next generation. The next
generation is created through a process of crossover, where two
parents’ chromosomes are combined to create offspring, and muta-
tion, where small changes are made to the offspring’s chromosome
to introduce variation. This new population replaces the old one
and the cycle continues until a satisfactory solution is attained or
predetermined termination criteria are met.

In this work, we employ two different multi-objective genetic
algorithms, known as NSGA-II and AGE-MOEA.

NSGA-II, similar to the single-genetic algorithm, follows six main
steps: initialization, evaluation, selection, crossover, mutation, and
reinsertion. The key difference lies in the selection phase. Since
NSGA-II deals with multiple objectives, determining the fittest solu-
tion becomes challenging. To address this, it employs the principle
of Pareto optimality, prioritizing solutions that are not dominated
by others in the current population.

To decide which individuals to select, NSGA-II uses a crowd-
ing distance. Essentially, solutions farther from the population’s
center are more likely to be chosen. Additionally, the algorithm
incorporates a fast non-dominated sorting algorithm to identify
individuals forming the current Pareto frontier. This helps retain
diverse and high-quality solutions in the next generation. Across
successive generations, NSGA-II converges towards stable solutions,
specifically the Pareto-optimal set for the given problem.

Pareto non-dominated solutions refer to a set of solutions in
multi-objective optimization where no other solution exists that
simultaneously improves all objectives; formally, a solution x∗ is
Pareto non-dominated if there is no other solution x′ such that
𝑓𝑖 (x′) ≤ 𝑓𝑖 (x∗) for all objectives 𝑖 and 𝑓𝑗 (x′) < 𝑓𝑗 (x∗) for at least
one objective 𝑗 , where 𝑓𝑖 represents the objective functions.

NSGA-II performs well for optimization problems with two to
three objective functions [7]. However, as the number of objectives
increases, the effectiveness of this algorithm tends to degrade. To
resolve this problem, [27] has introduced the AGE-MOEA algorithm,
which builds upon NSGA-II but introduces modifications in the
selection phase to better handle multi-objective optimization.

While NSGA-II employs crowding distance for solution selection,
AGE-MOEA replaces this with a survival score that accounts for
both diversity and proximity, adapting iteratively to estimate the
optimal Pareto front’s geometry. This adaptive approach allows
AGE-MOEA to maintain a balanced population and enhance the
convergence towards the Pareto-optimal set, without making any

Segment-Based Test Case Prioritization: A Multi-objective Approach ISSTA ’24, September 16–20, 2024, Vienna, Austria

assumptions about the front’s shape, which results in more robust
and efficient optimization outcomes.

3.3 Multi-objective Optimization Formulation

3.3.1 Encoding. We expect the output solution to be an order of
test cases. Given a test suite has a length of 𝑁 test cases, the number
of all possible solution candidates is 𝑁 !. In the set of candidates, let
𝑆 be a random solution, 𝑆 = {𝑇𝐶𝑖 ,𝑇𝐶 𝑗 , . . . ,𝑇𝐶𝑘 }, meaning that the
order for execution is 𝑇𝐶𝑖 , then 𝑇𝐶 𝑗 , and 𝑇𝐶𝑘 is executed last.

3.3.2 Crossover. We adopt the PMX-Crossover operator, a method
widely applied in previous TCP studies [3, 20]. This operator com-
bines a pair of solutions by randomly selecting an intermediate
point and exchanging permutation elements at that point between
the two solutions.

3.3.3 Mutation. Consider a chromosome 𝑝 with |𝑝 | = 𝑁 . During
each mutation event, the chromosome 𝑝 can undergo modification
through one of three mutation operators: swap, insert, and invert.

(1) Swap Operator: Randomly select two positions 𝑖 and 𝑗 from
𝑝 and exchange the corresponding test cases, resulting in
the creation of a new offspring.

(2) Invert Operator: Randomly choose two positions 𝑖 and 𝑗

(0 ≤ 𝑖 < 𝑗 ≤ 𝑁), then reverse the segment from 𝑝𝑖 to 𝑝 𝑗 to
generate a new offspring.

(3) Insert Operator: Randomly select two positions 𝑖 and 𝑗 , and
relocate 𝑝𝑖 to position 𝑗 , generates a new offspring.

3.3.4 Fitness functions. In our framework, the multi-objective op-
timization for test case prioritization is targeted toward the four
types of entities: segments, sibling objects, object types, and
objects as explained in Section 2. First, for segments, we prioritize
the ranking with the test cases covering more segments in the web
pages. Second, we observe that there are objects that are different,
but they share the same underlying function. Focusing on these
objects exclusively may result in redundant testing. In order to
prevent redundancy, we estimate repeated behaviors by grouping
sibling objects and aim to extend the coverage of sibling objects
across multiple test cases, and we prioritize those test cases.

Definition 3.2. (Sibling Objects) In the scope of our work, sib-
lings are defined as objects within the same segment that share the
same absolute XPath skeleton (XPath without indices).

Third, we recognize the need to diversify more object types
within the same segment, such as buttons, inputs, checkboxes, and
other web elements, to improve the likelihood of detecting vari-
ous faults on those elements. Lastly, we also aim to promote the
coverage for more objects from the test cases in the test suite.

To define the fitness function for each of the four objectives (seg-
ments, sibling objects, object types, and objects), we have drawn
the inspiration from the APFD metric [32] that is popularly used in
evaluating the ranking of the test cases in a test suite. Rothermel

et al. [32] introduced the APFD metric to evaluate the effective-
ness of prioritized test suites in fault detection, which is widely
recognized as the ultimate goal for test case prioritization in sev-
eral approaches [14, 24, 35]. This metric provides insights into the
capability of prioritization techniques to reveal faults sooner, i.e.,
by the test cases that were ranked higher. APFD is computed as
follows:

𝐴𝑃𝐹𝐷 = 1 − 𝑇𝐹1 +𝑇𝐹2 + ... +𝑇𝐹𝑚
𝑛𝑚

+ 1
2𝑛

(1)

where 𝑇𝐹𝑖 is the first test case that reveals fault 𝑖 ,𝑚 is the total
number of faults revealed by the test suite and 𝑛 is the total number
of test cases in the test suite. APFD ranges from 0% to 100%, a higher
value means better ordering of test cases in terms of early fault
detection. That is, APFD gives a higher score for the ranking of the
test cases in a test suite in which more test cases revealing the faults
are ranked higher.

Inspired by the spirit of APFD, we introduce the fitness function
for each objective as follows. Let us take the segment objective as
an example. The fitness function for the segment objective, F𝑠𝑒𝑔 ,
gives more rewards to a ranking of test cases in a test suite such
that more test cases covering the segments in a web page are
ranked higher. Mathematically,

F𝑠𝑒𝑔 = 1 − 𝑇𝑆1 +𝑇𝑆2 + . . . +𝑇𝑆𝑚
𝑛𝑚

+ 1
2𝑛

(2)

where𝑚 denotes the number of segments, 𝑇𝑆𝑖 denotes the first test
case in the test suite that covers the segment 𝑖 . The formula (2) means
that we aim to cover our more segments in the ranked list of test
cases, expecting that the test suite can detect faults sooner.

Note that, the APFDmetric (Formula (1)) and the fitness function
(Formula (2)) differ from each other in the following aspects. First,
while both APFD and F𝑠𝑒𝑔 are the measurements of the quality
of a ranking of test cases in a test suite, APFD favors the ranking
with more high-ranked test cases revealing faults and F𝑠𝑒𝑔 favors
the one with more high-ranked test cases covering the segments. The
intuition is that covering more segments early in the ranked list
of test cases would lead to revealing faults earlier. Second, APFD
requires the knowledge of the ground truth on the faults, while
F𝑠𝑒𝑔 does not because it focuses on the coverages of the web seg-
ments. Third, solely covering more segments does not always lead
to revealing the faults earlier because in our framework, we aim
to have multi-objective optimization with objectives other than
covering segments. In brief, when we use APFD as the evaluation
metric for our framework (using revealing faults as a crite-
rion for evaluation), the evaluation is independent of the fitness
functions (using coverage on segments as a criterion for a
fitness function) in our approach.

Similar to Formula (2), we define fitness functions for the other
three objectives: 1) F𝑠𝑖𝑏−𝑜𝑏 𝑗𝑒𝑐𝑡𝑠 is the average percentage sibling
object coverage , 2)F𝑜𝑏 𝑗−𝑡𝑦𝑝𝑒𝑠 is the average percentage object type
coverage, and 3) F𝑜𝑏 𝑗 is the average percentage object coverage.

Since the object type is the basis forming other types of entities,
a test suite that cover all objects inherently guarantees coverage of
the other objective elements (segments, sibling objects, and object
types). However, optimizing the coverage of objects F𝑜𝑏 𝑗 does not
guarantee that other functions (F𝑠𝑒𝑔 , F𝑠𝑖𝑏−𝑜𝑏 𝑗𝑒𝑐𝑡𝑠 , F𝑜𝑏 𝑗−𝑡𝑦𝑝𝑒𝑠) will
also be optimized. There is an interdependent relationship among

ISSTA ’24, September 16–20, 2024, Vienna, Austria Huynh et al.

these functions: increasing the coverage of segments F𝑠𝑒𝑔 , sibling
objects F𝑠𝑖𝑏−𝑜𝑏 𝑗𝑒𝑐𝑡𝑠 , or object types F𝑜𝑏 𝑗−𝑡𝑦𝑝𝑒𝑠 naturally increases
the coverage of objects F𝑜𝑏 𝑗 . On the other hand, F𝑠𝑖𝑏−𝑜𝑏 𝑗𝑒𝑐𝑡𝑠 and
F𝑜𝑏 𝑗−𝑡𝑦𝑝𝑒𝑠 do not have such direct proportionality. F𝑠𝑖𝑏−𝑜𝑏 𝑗𝑒𝑐𝑡𝑠
and F𝑜𝑏 𝑗−𝑡𝑦𝑝𝑒𝑠 both depend on segments and objects but differ in
their nature. Maximizing one function does not lead to the maxi-
mization of the other function. Therefore, it is not possible to have a
single solution that can optimize all four objective functions simul-
taneously. As a result, the responsibility of the Genetic Algorithm is
to find a test case order that optimizes the trade-off between these
fitness functions.

3.3.5 Choosing a Pareto optimal solution. Multi-objective optimiza-
tion algorithms return a set of non-dominated solutions on the
Pareto front, revealing trade-offs between their respective objec-
tive functions. Each candidate solution has four values for four
aforementioned fitness functions. The next step in our method
involves determining the most optimal solution among the set of
non-dominated solutions. We employ multi-criteria sorting on the
set of non-dominated solutions, with the sorting weights in the
following objective order: F𝑠𝑒𝑔 (segments), F𝑠𝑖𝑏−𝑜𝑏 𝑗𝑒𝑐𝑡𝑠 (sibling
objects), F𝑜𝑏 𝑗−𝑡𝑦𝑝𝑒𝑠 (object types), and F𝑜𝑏 𝑗 (objects).

4 Empirical Evaluation
4.1 Research Questions
RQ1 (Fault Detection)Howdoes ourmethod comparewith other

existing TCP approaches in terms of average fault detection
rate (APFD)?

RQ2 (Fault Coverage) How many test cases are needed to fully
cover all faults in a project in the oracle?

RQ3 (Redundant Testing) How does our method compare with
other existing TCP approaches in terms of diversifying test
objects to prevent redundant testing?

RQ4 (Time Efficiency) How time efficient is our approach in
comparison with the baseline?

4.2 Baseline Approaches
Random-based approaches:

Random order: In this approach, test cases are ordered randomly.
Random Prioritization is the most straightforward in concept and
the simplest and most cost-effective in implementation [36]. As the
most basic method, it serves as the lower bound in our experiment.
We apply this technique to each test suite 𝑛 times, with 𝑛 being the
number of test cases of test suite, and record the evaluation values
each time the ordered test suite is executed. These values are then
averaged to obtain the final results.

Zhou et al. [37] [ART-F]: This technique is a family of ART-
based TCP methods guided by coverage and similarity. ART [6, 13],
designed to improve random testing, operates based on the principle
of evenly spreading test cases across the input domain. ART-F is one
of the implementations based on this principle. At each iteration,
a fixed-size "candidate set" is dynamically formed by randomly
selecting a test case from the set of not yet prioritized test cases.
The test case with the maximum Manhattan distance from the
already executed test cases is chosen next in the prioritized suite.

Greedy approaches:
Greedy Total [32] [GT] : This approach orders test cases with

respect to the number of entities covered by each test case. The
total number of entities covered by each test case is counted and
the test suite is then ordered in descending order of that number.

Greedy Additional [32] [GA] : This approach is similar to GT, the
sole difference being that it selects the next test case as the one
that covers the most entities among those not yet covered by the
prioritized test cases.

Additional Spanning [24] [GA-S] : At each iteration, it selects the
test case that covers most entities not yet covered among those in
"spanning set". The concept of "spanning set" for coverage criterion
is first introduced in [21]. A spanning set is a minimum subset of
entities with the property that any set of test cases covering this
subset covers every entity in the program.
Machine Learning-based approaches:

Yu et al. [35] [Terminator]: Terminator is a test case prioriti-
zation method specifically designed for UI testing. It employs a
Support Vector Machine (SVM) model, using input from any of
text descriptions of test cases, results from previous runs (i.e. test
cases failed, passed or skipped), or a combination of both. How-
ever, in our experiment, we only use text description as the sole
input due to the lack of historical data, which is introduced as
Terminator-F1. The SVM model is trained through active learning
and distinguishes between passed and failed test cases using cer-
tainty sampling and uncertainty sampling strategies. Notably, the
method is deemed real-time as it continuously acquires knowledge
with each execution of a test case.

4.3 Evaluation Metrics
4.3.1 APFD. The first metric is the Average Percentage of Faults
Detected (APFD) [32]. APFD ranges from 0% to 100%, a higher value
indicates better ranking of test cases in early fault detection.

4.3.2 APFDc. APFD does not take into account the execution time
and the severity of test cases while in reality, some test cases might
take more time to execute compared to others, and some faults
might cause more severe damage if encountered. As such, Elbaum
et al. [8] propose APFDc, which treats test cases differently based on
the cost and severity of test cases. APFDc is calculated as follows:

𝐴𝑃𝐹𝐷𝑐 =

∑𝑚
𝑖=1 (𝑓𝑖 × (∑𝑛

𝑖=𝑇𝐹𝑖
𝑡𝑖 − 0.5𝑡𝑇𝐹𝑖))∑𝑛

𝑖=1 𝑡𝑖 ×
∑𝑚
𝑖=1 𝑓𝑖

(3)

where 𝑡1, 𝑡2, ...𝑡𝑛 are the cost for 𝑛 test cases, 𝑓1, 𝑓2, ...𝑓𝑚 are the
severity of𝑚 faults and 𝑇𝐹𝑖 is the first test case that reveals fault 𝑖 .
In this work, we only take into account the cost of test cases and
ignore the severity of faults (i.e. 𝑓1 = 𝑓2 = ... = 𝑓𝑚 = 1).

4.3.3 NAPFD. APFD and APFDc both assume that ranked test
cases can detect all faults. Yet, the cost for running the whole test
suite is expensive while the budget is limited. In such situations,
there is a likelihood of variations in the test suite of each run,
leading to the failure in detecting all faults [26]. Thus, Qu et al. [30]
proposed NAPFD, which can be used in scenarios where the entire
test suite is not executed. The formula is as follows:

𝑁𝐴𝑃𝐹𝐷 = 𝑝 − 𝑇𝐹1 +𝑇𝐹2 + · · · +𝑇𝐹𝑚
𝑛𝑚

+ 𝑝

2𝑛
(4)

Segment-Based Test Case Prioritization: A Multi-objective Approach ISSTA ’24, September 16–20, 2024, Vienna, Austria

Table 2: Summary of test suites including the number of test
cases, faulty test cases, root causes, and collected states.

Test suite TCs F. TCs RCs States
addressbook 93 10 2 386
claroline 235 8 1 1489
dimeshift 174 140 4 832
pagekit 37 10 2 213
phoenix 314 11 5 1618
ppma 62 37 3 308

juice_shop(1) 92 11 11 284
juice_shop(2) 92 57 4 284
mattermost(1) 221 27 9 1029
mattermost(2) 191 9 9 869

moodle 27 14 6 413

where 𝑝 is the number of faults detected by the prioritized test suite
divided by the number of faults detected in the full test suite. When
𝑝 = 1, the NAPFD becomes APFD.

4.3.4 MTFD. Aside from the aforementioned metrics, we also mea-
sure the average percentages of test execution needed to achieve
100% of fault coverage as in [25] by computing Minimal Tests for
Fault Detection (MTFD) as follows:

𝑀𝑇𝐹𝐷 =
max{𝑇𝐹1,𝑇 𝐹2, ...𝑇 𝐹𝑚}

𝑚
(5)

4.3.5 FDR. In addition to evaluating faults detection rate, we aim
to assess the effectiveness of our method in minimizing test redun-
dancy. Test redundancy in test case selection refers to repeatedly
testing of certain functions. However, in the context of prioritiza-
tion, we need to execute all test cases and not ignore any of them.
To assess the test redundancy in the current context, we propose a
new metric called Function Duplication Rate or FDR.

𝐹𝐷𝑅 =

∑𝑘
𝑖=0 |𝐹𝑖 | − |⋃𝑘

𝑖=0 𝐹𝑖 |∑𝑛
𝑖=0 |𝐹𝑖 | − |⋃𝑛

𝑖=0 𝐹𝑖 |
(6)

where 𝑛 represents the total number of test cases, 𝑘 is the number
of test cases needed to cover all testing functions, and 𝐹𝑖 denotes
the set of functions covered by the 𝑖-th test case. A lower FDR
indicates fewer duplicated functions being tested. If a solution’s 𝑘
value is low, indicating that fewer test cases are needed to cover
all functions of test objects, it suggests a more efficient solution
in minimizing test redundancy. When we need to execute all test
cases to cover all functions, then 𝑘 is 𝑛 and 𝐹𝐷𝑅 reaches 100%.

4.4 Dataset
Table 2 provides a summary of 11 test suites utilized in our experi-
ments. These test suites vary in the number of test cases, test states,
root causes, and failure rates, thereby presenting a diverse and
comprehensive set of scenarios. The data comes from two sources:

Yandrapally et al. [34]. This research introduces a model-based test
generation technique called Fraggen, capable of generating oracles
for test cases it generates. They also provide a dataset for their
experiments, including test suites for eight widely-used subject sys-
tems. To reuse these test suites, we conducted two additional steps

for data preprocessing. Fraggen identifies whether a test case passes
or fails by comparing the visual and DOM aspects of each state,
without detailing the specific error. Therefore, we first manually
categorized errors into root cause groups by reviewing captured
screenshots. Subsequently, we performed web page segmentation
on the recorded HTML files to derive coverage information for each
test case. We selected six out of the eight projects that provided suf-
ficient information: ’addressbook,’ ’claroline,’ ’dimeshift,’ ’pagekit,’
’phoenix,’ and ’ppma.’ These subject systems span a diverse array
of frontend frameworks such as React, Vue, Angular, etc.

Self-collected datasets. We selected two open-source web appli-
cations with UI test cases: ’mattermost’ [2] and ’juice-shop’ [1].
Mattermost is a team communication management system, while
juice-shop is a web application for security training. Both projects
provide end-to-end (e2e) UI test cases written in Cypress. For Mat-
termost, with its multiple frontend versions, we aimed to simulate
software evolution.We selected a frontend version and executed the
e2e test case of the preceding minor version. Two pairs of versions
were chosen: Test case v7.7.4, front-end v7.8.12 (mattermost(1)),
and Test case v7.8.12, front-end v7.9.3 (mattermost(2)). Concerning
JuiceShop, which released multiple versions with primary changes
in the backend, we decided to replicate modifications in evolu-
tionary applications through mutation analysis. We conducted an
analysis of the e2e test cases, randomly selecting two sets of objects
that have lengths of 4 and 10, causing 10-40% of tests to fail. Mu-
tations were performed by modifying the IDs of these test objects,
resulting in two versions of the frontend application. Subsequently,
the e2e test suite was consecutively executed on each frontend
version to obtain two test run results.

Additionally, we adopted a test suite from [25] written in Katalon
Groovy for the Moodle project, a course management system. This
inclusion broadens our dataset to a total of 11 test suites.

4.5 Experimental Setup
4.5.1 Experimental Environment. We carried out the experiment
on the macOS environment equipped with a a 2 GHz Quad-Core
Intel Core i5 processor and 16GB of RAM.

4.5.2 Configuration for our algorithms. We tried different config-
urations for two backbones and only recorded results of the best
configuration as the final experimental results. After exploring var-
ious configurations, we determined that the optimal settings for
two evolutionary search algorithms, including AGE-MOEA and
NSGA-II, were as follows: population size set to 100, the number of
generations at 200, and a crossover probability of 0.5. For simplicity
in the experiment results section, we use the labels SegTCP and
SegTCP* to refer to our multi-objective method with AGE-MOEA
and NSGA-II, respectively.

4.5.3 Configuration for Terminator. In the absence of historical
data, we choose the F1 version of Terminator, utilizing text features
as input. Terminator involves two parameters: the batch size 𝑁1
and the threshold of the query strategy 𝑁2. Following its paper,
we set 𝑁1=10 and 𝑁2=30. For text feature extraction, we employed
TF-IDF, a widely used method in many other applications.

ISSTA ’24, September 16–20, 2024, Vienna, Austria Huynh et al.

5 Experimental Results
5.1 Comparison with Other TCP Approaches on

Fault Detection Rate (RQ1)

Table 3: Average APFD, APFDc, MTFD, FDR of our methods
(SegTCP and SegTCP*) and the baselines (RQ1 and RQ2)

Approach APFD APFDc MTFD FDR
SegTCP 87.8/11.5 79.2/17.7 22.5/23.3 45.2/32.1
SegTCP* 84.6/13.5 75.9/19.8 31.1/29.1 48.9/35.3

GA 83/14.1 71.9/18.9 33.7/26.2 70.5/27.5
GA_S 77.9/15.8 73.9/19.1 42.7/28.5 70.1/29.6
GT 76.9/12.8 62.4/17.6 46.3/27.4 97.3/3.1

Terminator 76.5/16.2 73.1/20.1 42.6/31.7 84.3/21.3
ART-F 74.1/15.5 74.5/15.6 53.1/32.3 94.7/7.2
Random 73.9/15.5 73.7/15.5 53.1/33.7 95.5/6.3

Results are presented in the format of𝑀/𝜎 , where𝑀 denotes the mean
value of the respective metric, and 𝜎 represents the standard deviation.
The bold values show the optimal results for the respective metrics, with
the highest values for APFD and APFDc and the lowest value for MTFD
(Minimal Tests for Faults Detection) and FDR (Function Duplication Rate)

In addressing the RQ on fault detection effectiveness, we ex-
amine the APFD and APFD considering the cost (APFDc) (more
details about these metrics are in Section 4.3.2) metrics for our
proposed methods (SegTCP and SegTCP*) against six existing TCP
approaches over 11 test suites as mentioned in Section 4.4. The
results, as outlined in Table 3 and visualized in Figure 4 and Figure
5f, indicate that our methods demonstrate superior performance,
particularly the SegTCP method, which shows the highest fault
detection rates in both APFD (87.8%) and APFDc (79.2%) metrics.

When it comes to greedy-based methods (GA, GA-S, GT), while
they are straightforward and have a long history of usage, they still
yield satisfactory results in UI TCP. Terminator-F1, on the other
hand, is an ML-based approach dedicated for TCP in UI testing,
demonstrates less favorable performance compared to the greedy
family. The remaining two approaches, characterized as purely
random and adaptive random (ART-F), produce marginal results,
with the latter showing a slightly better performance.

Looking closely at the APFD results, we observe that SegTCP
outperforms other approaches, with scores consistently higher than
all the competing methods. This suggests that SegTCP can detect
faults more quickly than the alternative TCP strategies. SegTCP*
also performs well with an APFD score of 84.6%, which is still
above the majority of the competing methods, further supporting
the efficacy of our approach.

The Greedy Additional (GA) approach has consistently proven
itself as a strong baseline in prior research efforts. FAST [24] and
AGA [16] are proposed to improve the time efficiency of GA with-
out showing a significant difference in effectiveness. Despite the
simplicity of concept and long-standing usage of Greedy algorithms,
they continue to yield satisfactory results in test case prioritization.
The core idea of GA is that longer test cases have a higher potential
of detecting failures. This idea has been proven by the impressive
APFD value of 83%, which beats all other alternative methods except
ours. However, longer test cases come with more cost of execution,

contradicting the principle of APFDc. Consequently, their APFDc
are even marginally lower than those by the Random method.

The experiment considers the normalized APFD, termed NAPFD
(details in Section 4.3.3), to assess the effectiveness of TCP ap-
proaches within constrained execution time. Average NAPFDs for
each TCP technique are depicted in Figure 5f. For a clear view, we
represent our methods by the best of them which is SegTCP.

In the initial phase, comprising less than 10% of the test suite,
our NAPFD closely aligns with that of GA. However, as the number
of executed tests increases, NAPFD demonstrates a progressively
prominent performance. The key reason is that at the early stage,
both our method and GA tend to choose test cases with a high
number of steps, which can cover many objects, segments, siblings,
etc. In the latter test case, when there are more test objects, the
diversity strategy of those algorithms becomes clearer and has a
major difference from each other.

Turning to Terminator, its NAPFD for test suite fractions below
40% closely resembles random-based methods. In the early stages,
Terminator is required to execute a number of random tests and
construct a substantial knowledge base. This knowledge is used to
train an SVM model to predict which test cases may fail and should
be added to the execution queue. Terminator’s enhanced perfor-
mance becomes more apparent in later test executions, exceeding
50% of the test suite.

Considering the statistical difference in APFD values between
methods, Figure 4 illustrates the APFD and APFDc values for each
method across 11 test suites. SegTCP exhibits a comparatively
higher median in APFD than most of the other methods, indicating
that it tends to detect faults more efficiently on average. The dis-
tribution of APFDc also suggests that when considering the cost,
SegTCP remains effective.

Figures 5b to 5e illustrate how ourmulti-objective goal is achieved.
Our primary objective is to promptly cover all segments, siblings, ob-
ject types, and objects in the test execution sequence. This achieve-
ment is depicted in the line chart. For example, Figure 5b displays
the percentage of the total number of segments that are covered
over the gradually increasing fraction of a test suite. As seen, only
approximately 20% of test cases are required to cover 80% of all sub-
ject elements, and 60% to cover 100% of them. Importantly, referring
to chart 5a, there is a direct impact between the element coverage
and fault detection, showcasing the efficacy of our multi-objective
element coverage approach in fault detection.

5.2 Comparison Results with other TCP
Approaches on Fault Coverage (RQ2)

The MTFD metric (see Section 4.3.4) quantifies the minimum pro-
portion of the test suite necessary to cover 100% of faults. The
column MTFD in Table 3 shows the results for all the approaches
under study. As seen, across 11 test suites for all 11 projects in our
dataset, our approach SegTCP demonstrates a mean MTFD of 22.5%,
indicating that SegTCP requires only 22.5% of the test cases to be
executed to uncover all faults, with a standard deviation of 23%.
The approach requires testing a smaller portion of the test suite
to uncover all faults than do the other approaches, compared with
33.7% and 53.1% by the GA and random methods, respectively.

Segment-Based Test Case Prioritization: A Multi-objective Approach ISSTA ’24, September 16–20, 2024, Vienna, Austria

Seg
TCP GA GT

GA-S

Te
rm

ina
tor

ART-F

Ran
do

m

Method

30

40

50

60

70

80

90

100

Va
lu

e

metric
APFD
APFDC

Figure 4: The APFD and APFDc distribution of our SegTCP
method and other six methods over 11 test suites (RQ1).

GA exhibits a mean requirement of one-third of the test suite
to uncover all faults, which is also noteworthy. In the case of the
Random method, on average, approximately a half of test suites
need to be executed to cover all faults. Because when test case order
is randomized, failure occurrences may distribute across various
positions. In our experiment involving 11 test suites, we conducted
multiple iterations for Random (n times, where n represents the
number of test cases in each suite) and get the mean value of MTFD.
As a result, the average percentage of test cases required to identify
all failures approaches 53%. The adaptive random method ART-F
yields results similar to pure randomness.

Terminator, however, achieves an MTFD value of 42.6% with a
standard deviation of 31.7%, indicating inconsistency across dif-
ferent test suites. Terminator’s effectiveness relies on executing a
sufficient number of test cases to train a robust SVM model. If the
initially chosen random test cases lack a balance representation
of both successful and failed test cases, it can introduce bias into
the training data, potentially impacting performance. Despite out-
performing pure random methods in terms of MTFD, Terminator’s
efficacy is still contingent upon randomness.

5.3 Comparison of TCP Approaches on Test
Redundancy (RQ3)

Our objective here is to demonstrate the effectiveness of our method
in preventing test redundancy, using the FDR from Section 4.3.5.
FDR indicates the function duplication rate of a prioritized test
suite. A lower FDR points out a less redundant order of test cases.

Our methods show good results with the best FDR of SegTCP is
45.2%, significantly outperforming greedy, ML and random-based
methods. One of our objectives is maximizing the sibling’s coverage
rate. Given that siblings are objects in the same segment with the
same xpath’s skeletons. Our observation on many web pages shows
that sibling elements tend to share their behavior. Diversifying
siblings consequently reduces the redundancy in test functions.

As for Greedy Additional, its ultimate strategy is to cover all ob-
jects as soon as possible, which inadvertently prevents the repeated
test function, as shown by the FDR value of 70.5%. GA-S, a variant

Table 4: Time Efficiency Comparison (RQ4)

Method Avg. Prioritiz.
Time (s)

Avg. Time to Detect
All Faults (s)

Avg. Time to Detect
One Fault (s)

SegTCP 75.40 935.24 188.12
SegTCP* 72.82 1,195.17 220.91

GA 0.01 1,309.04 231.35
GA-S 0.07 1,202.16 243.15
GT 0.01 1,799.10 463.15

Terminator 0.12 1,273.25 223.25
ART-F 0.01 1,276.09 263.83
Random 0.01 1,367.93 268.96

of Greedy Additional, slightly outperforms its predecessor by in-
corporating the concept of a spanning set, specifically designed to
reduce repeated testing elements.

The Terminator method, which is not a coverage-based TCP
technique, generates prioritized test suites with a higher duplication
count, as reflected in its FDR of 84.3%. This outcome was expected,
as the Terminator uses an SVM to predict and pick the test case
with the highest probability of failing. This approach leads to the
selection of test cases that are close or similar to previous failed test
cases, thereby escalating the number of repeated testing functions.

In random-based approaches, the absence of a rule for test cases
orders means that random methods continue running until the end
of the execution queue to cover all testing functions. Therefore, the
duplication rates for these approaches tend to approach 100%.

5.4 Time Efficiency (RQ4)

5.4.1 Prioritization Time and Fault Detection Time. In this exper-
iment, we aim to measure the time efficiency of our approach in
comparison with that of the baselines. In addition to measuring
the average prioritization time for a project in our dataset, we also
measured the average time to detect all the faults and the average
time to detect one fault in a project (including the prioritization
time). As seen in Table 4, due to multi-objective optimization strat-
egy, the average prioritization time costs of our approaches for
a project (SegTCP and SegTCP*) are much higher than those for
the baseline approaches. This is expected due to the optimization
algorithms used in our framework (AGE-MOEA over NSGA-II).
However, considering the effectiveness of the approaches in fault
detection, we can observe that both of our approaches SegTCP and
SegTCP* achieve the shortest average time to detect each fault and
to detect all the faults in a project. This demonstrates the time effi-
ciency of our approaches in which despite having longer time for
ranking/prioritizing the test cases, the average time to detect faults
is smallest, i.e., the effectiveness in fault detection in a time unit is
highest. The total time to detect one fault that our approach saved
is from 15.7% to 2.46X. In brief, the time cost for prioritization
with multiple objective optimization is worth spending in order to
detect faults much earlier.

5.4.2 Segmentation Time. In accordancewith Section 3.1, we reused
the DOM-based web page segmentation algorithm from [12] to
fully automate the web segmentation process. To test one version

ISSTA ’24, September 16–20, 2024, Vienna, Austria Huynh et al.

0 20 40 60 80 100
Test suite fraction

0

20

40

60

80

100

P
er

ce
nt

 d
et

ec
te

d
fa

ul
ts

(a) Fault coverage.

0 20 40 60 80 100
Test suite fraction

0

20

40

60

80

100

P
er

ce
nt

 d
et

ec
te

d
se

gm
en

ts

(b) Segment coverage.

0 20 40 60 80 100
Test suite fraction

0

20

40

60

80

100

P
er

ce
nt

 d
et

ec
te

d
ob

je
ct

s

(c) Object coverage.

0 20 40 60 80 100
Test suite fraction

0

20

40

60

80

100

P
er

ce
nt

 d
et

ec
te

d
ob

je
ct

 ty
pe

s

(d) Object-type coverage.

0 20 40 60 80 100
Test suite fraction

0

20

40

60

80

100

P
er

ce
nt

 d
et

ec
te

d
si

bl
in

gs

(e) Sibling coverage.

0 20 40 60 80 100
Test suite fraction

0.0

0.2

0.4

0.6

0.8

N
A

P
FD SegTCP

GA
Random
GA-S
GT
Terminator
ART-F

(f) Average NAPFD.

Figure 5: Average coverage graphs for 5 types of subjects along with the Average NAPFD chart (RQ1, RQ2)

of a project, the segmentation is conducted once during the initial
prioritization run for each test suite, extracting coverage informa-
tion. Subsequently, this coverage data is stored and utilized for
subsequent prioritization runs. The average time required for seg-
mentation per screen is 0.5 seconds, based on our segmentation on
1,300 screens with various complexity. Notably, the time taken to
segment the largest test suite, both in terms of the number of test
steps and the complexity of a DOM, amounts to 8.6 minutes.

5.5 Statistical Tests
We conduct statistical analyses to assess the improvement of segment-
based TCP over alternative methods in terms of performance met-
rics. Combining data from all 11 test suites, we employ the one-sided
Wilcoxon Signed-rank test, chosen for its paired samples. We set a
p-value threshold of 0.05, wherein p-values less than this threshold
indicate that the null hypothesis should be rejected, in other words,
the difference in the distributions of our method is significantly
higher than the compared method.

Table 5: One-sided Wilcoxon Signed-rank Test Results Com-
paring SegTCP with Other Methods on Performance Metrics.

SegTCP vs. APFD APFDc FDR
GA 0.0183 0.0068 0.0025
GT 0.0025 0.0005 0.0005
GA-S 0.0005 0.021 0.0025

Terminator 0.0093 0.0337 0.0005
ART-F 0.0005 0.0269 0.0005
Random 0.0005 0.021 0.0005

At the significance level of 0.05, our method makes significant
improvements as compared to other TCP approaches on APFD,
APFDc, and FDR. In other words, we can detect faults better than
the alternative ones.

Segment-Based Test Case Prioritization: A Multi-objective Approach ISSTA ’24, September 16–20, 2024, Vienna, Austria

6 Related Work
Search-based approaches leverage heuristic searching algorithms
to explore the optimal permutation of test cases. There are various
implementation for the searching algorithm. Li et al. [18] list out
five popular algorithms for this approach: Greedy Algorithm, Addi-
tional Greedy, 2-Optimal Algorithms, Hill Climbing and Genetic
Algorithms (GenA). NSGA-II [7] is a GenA-based technique applied
in solving constrained multi-objective optimization problem. Li et
al. [17] employ and parallelize NSGA-II for better speed in their
work. Pradhan et al. [29] extract rules from past execution data
and took them as inputs for their prioritizer. They establish two
objectives, namely Fault Detection Capability (FDC) and Test Case
Reliance Score (TRS), and incorporate them into NSGA-II to search
for optimal solutions. Birchler et al. [3] propose an approach for
black-box TCP leveraging multi-objective GenAs for testing self-
driving cars. In their work, they utilize NSGA-II to explore optimal
solutions based on two objectives: the sum of distances between
a test 𝑡𝑖 and its predecessor 𝑡𝑖−1, and the sum of the cost of a test
case 𝑡𝑖 divided by its position 𝑖 in the test suite.

Coverage-based strategies [10, 31, 32] aim to rank test cases in a
manner that maximizes the coverage of target items (e.g. branches,
code changes, etc.). The total strategy picks the next test case with
the highest absolute coverage, while the additional strategy selects
the one with the highest coverage of code units that haven’t been
covered by the prioritized test cases. [19] enhance coverage-based
methods by integrating fault-proneness information, obtained by a
neural network into them. [22, 23] propose 3 new coverage criteria
that took into account elements and event sequences based on a
hypothesis that combinatorial-based criteria could improve the rate
of fault detection. In [22], the test case that includes sequences
occurring only once in the test suite is added into the reduced
test suite, and the sequences included are marked as covered. The
algorithm in [23] greedily search for the next test case that has the
highest number of t-way sequences covered.

Similarity-based approaches try to cover test cases that are dis-
tant from the already covered test cases. In [24], the next test case
is the one with the greatest Jaccard similarity to the set of so-far-
ordered test cases. ART-based techniques [13, 37] attempt to spread
the test input in the input domain as evenly as possible.

History-based approaches reuse data from previous runs for the
current cycle. [11] utilizes historical data such as the cost of test
cases, the faults detected by the test case, and the fault severity of
detected faults and input them to GenA to search for the optimal
order. [25] combine reinforcement learning and coverage graph to
prioritize test cases.

Chen et al. [5] adopt an XGBoost predictive model to predict
which prioritization technique is best suited for current test suite.
Yu et al. [35] design a reinforcement learning framework that takes
the description of test cases as well as historical data as input to
order test cases for UI testing.

7 Conclusion
In conclusion, this paper introduces a multi-objective optimization
approach for prioritizing UI test cases, specifically addressing the
challenges posed by web page elements. The proposed SegTCP

method, utilizing AGE-MOEA search algorithms, outperforms ex-
isting TCP approaches, achieving the highest APFD and APFD with
Cost (APFDc) at 87.8% and 79.2%, respectively. The experiments,
conducted on a self-collected dataset comprising 11 diverse test
suites, demonstrate the effectiveness of SegTCP in fault detection,
element coverage, and minimizing test redundancy. The results also
highlight the importance of prioritizing UI test cases, especially
in scenarios where test suites are time-consuming, and traditional
prioritization methods may not be suitable. The statistical analy-
ses further substantiate the significant improvements offered by
SegTCP over alternative methods, emphasizing the effectiveness of
WPS in enhancing the efficiency of UI testing. Overall, the contribu-
tions of this paper include the introduction of a new optimization
approach, the construction of a comprehensive dataset, and empiri-
cal evidence showcasing the superiority of SegTCP in UI test case
prioritization.

Acknowledgments
We thank Katalon inc. for sponsoring this research. Additionally,
Tien N. Nguyen is supported in part by the US NSF grant CNS-
2120386 and the NSA grant NCAE-C-002-2021, and Vu Nguyen is
partially funded by the Vingroup Innovation Foundation (VINIF)
under the grant number VINIF.2021.JM01.N2.

References
[1] 2024. Juice Shop. https://github.com/juice-shop/juice-shop
[2] 2024. Mattermost Web App. https://github.com/mattermost/mattermost-webapp
[3] Christian Birchler, Sajad Khatiri, Pouria Derakhshanfar, Sebastiano Panichella,

and Annibale Panichella. 2023. Single and multi-objective test cases prioritization
for self-driving cars in virtual environments. ACM Transactions on Software
Engineering and Methodology 32, 2 (2023), 1–30.

[4] Renée C Bryce, Sreedevi Sampath, Jan B Pedersen, and Schuyler Manchester.
2011. Test suite prioritization by cost-based combinatorial interaction coverage.
International Journal of System Assurance Engineering and Management 2 (2011),
126–134.

[5] Junjie Chen, Yiling Lou, Lingming Zhang, Jianyi Zhou, Xiaoleng Wang, Dan Hao,
and Lu Zhang. 2018. Optimizing test prioritization via test distribution analysis. In
Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 656–667.

[6] Tsong Yueh Chen, Fei-Ching Kuo, Robert G Merkel, and TH Tse. 2010. Adaptive
random testing: The art of test case diversity. Journal of Systems and Software 83,
1 (2010), 60–66.

[7] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. 2002. A
fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on
evolutionary computation 6, 2 (2002), 182–197.

[8] Sebastian Elbaum, AlexeyMalishevsky, andGregg Rothermel. 2001. Incorporating
varying test costs and fault severities into test case prioritization. In Proceedings
of the 23rd International Conference on Software Engineering. ICSE 2001. IEEE,
329–338.

[9] Chunrong Fang, Zhenyu Chen, Kun Wu, and Zhihong Zhao. 2014. Similarity-
based test case prioritization using ordered sequences of program entities. Soft-
ware Quality Journal 22 (2014), 335–361.

[10] Dan Hao, Lu Zhang, Lei Zang, Yanbo Wang, Xingxia Wu, and Tao Xie. 2015.
To be optimal or not in test-case prioritization. IEEE Transactions on Software
Engineering 42, 5 (2015), 490–505.

[11] Yu-Chi Huang, Kuan-Li Peng, and Chin-Yu Huang. 2012. A history-based cost-
cognizant test case prioritization technique in regression testing. Journal of
Systems and Software 85, 3 (2012), 626–637.

[12] Minh-Hieu Huynh, Quoc-Tri Le, Vu Nguyen, and Tien Nguyen. 2023. Web Page
Segmentation: A DOM-Structural Cohesion Analysis Approach. In International
Conference on Web Information Systems Engineering. Springer, 319–333.

[13] Bo Jiang, Zhenyu Zhang, Wing Kwong Chan, and TH Tse. 2009. Adaptive random
test case prioritization. In 2009 IEEE/ACM International Conference on Automated
Software Engineering. IEEE, 233–244.

[14] Muhammad Khatibsyarbini, Mohd Adham Isa, Dayang NA Jawawi, Haza Nu-
zly Abdull Hamed, and Muhammad Dhiauddin Mohamed Suffian. 2019. Test case
prioritization using firefly algorithm for software testing. IEEE access 7 (2019),
132360–132373.

https://github.com/juice-shop/juice-shop
https://github.com/mattermost/mattermost-webapp

ISSTA ’24, September 16–20, 2024, Vienna, Austria Huynh et al.

[15] Jung-Min Kim and Adam Porter. 2002. A history-based test prioritization tech-
nique for regression testing in resource constrained environments. In Proceedings
of the 24th international conference on software engineering. 119–129.

[16] Feng Li, Jianyi Zhou, Yinzhu Li, DanHao, and Lu Zhang. 2021. Aga: An accelerated
greedy additional algorithm for test case prioritization. IEEE Transactions on
Software Engineering 48, 12 (2021), 5102–5119.

[17] Zheng Li, Yi Bian, Ruilian Zhao, and Jun Cheng. 2013. A fine-grained parallel
multi-objective test case prioritization on GPU. In Search Based Software Engi-
neering: 5th International Symposium, SSBSE 2013, St. Petersburg, Russia, August
24-26, 2013. Proceedings 5. Springer, 111–125.

[18] Zheng Li, Mark Harman, and Robert M Hierons. 2007. Search algorithms for
regression test case prioritization. IEEE Transactions on software engineering 33,
4 (2007), 225–237.

[19] Mostafa Mahdieh, Seyed-Hassan Mirian-Hosseinabadi, Khashayar Etemadi, Ali
Nosrati, and Sajad Jalali. 2020. Incorporating fault-proneness estimations into
coverage-based test case prioritization methods. Information and Software Tech-
nology 121 (2020), 106269.

[20] Alessandro Marchetto, Md Mahfuzul Islam, Waseem Asghar, Angelo Susi, and
Giuseppe Scanniello. 2015. A multi-objective technique to prioritize test cases.
IEEE Transactions on Software Engineering 42, 10 (2015), 918–940.

[21] Martina Marré and Antonia Bertolino. 2003. Using spanning sets for coverage
testing. IEEE Transactions on Software Engineering 29, 11 (2003), 974–984.

[22] Ryan Michaels, David Adamo, and Renee Bryce. 2020. Combinatorial-based event
sequences for reduction of android test suites. In 2020 10th Annual Computing
and Communication Workshop and Conference (CCWC). IEEE, 0598–0605.

[23] Ryan Michaels, Md Khorrom Khan, and Renee Bryce. 2021. Test suite prioriti-
zation with element and event sequences for android applications. In 2021 IEEE
11th Annual Computing and Communication Workshop and Conference (CCWC).
IEEE, 1326–1332.

[24] Breno Miranda, Emilio Cruciani, Roberto Verdecchia, and Antonia Bertolino.
2018. FAST approaches to scalable similarity-based test case prioritization. In
Proceedings of the 40th International Conference on Software Engineering. 222–232.

[25] Vu Nguyen and Bach Le. 2021. RLTCP: A reinforcement learning approach to
prioritizing automated user interface tests. Information and Software Technology
136 (2021), 106574.

[26] Rongqi Pan, Mojtaba Bagherzadeh, Taher A Ghaleb, and Lionel Briand. 2022. Test
case selection and prioritization using machine learning: a systematic literature
review. Empirical Software Engineering 27, 2 (2022), 29.

[27] Annibale Panichella. 2019. An adaptive evolutionary algorithm based on non-
Euclidean geometry for many-objective optimization. In Proceedings of the Genetic
and Evolutionary Computation Conference. 595–603.

[28] Hyuncheol Park, Hoyeon Ryu, and Jongmoon Baik. 2008. Historical value-based
approach for cost-cognizant test case prioritization to improve the effectiveness
of regression testing. In 2008 Second International Conference on Secure System
Integration and Reliability Improvement. IEEE, 39–46.

[29] Dipesh Pradhan, Shuai Wang, Shaukat Ali, Tao Yue, and Marius Liaaen. 2018.
REMAP: Using rule mining and multi-objective search for dynamic test case
prioritization. In 2018 IEEE 11th International Conference on Software Testing,
Verification and Validation (ICST). IEEE, 46–57.

[30] Xiao Qu, Myra B Cohen, and Katherine MWoolf. 2007. Combinatorial interaction
regression testing: A study of test case generation and prioritization. In 2007 IEEE
International Conference on Software Maintenance. IEEE, 255–264.

[31] Gregg Rothermel, Roland H Untch, Chengyun Chu, and Mary Jean Harrold. 1999.
Test case prioritization: An empirical study. In Proceedings IEEE International
Conference on Software Maintenance-1999 (ICSM’99).’Software Maintenance for
Business Change’(Cat. No. 99CB36360). IEEE, 179–188.

[32] Gregg Rothermel, Roland H. Untch, Chengyun Chu, and Mary Jean Harrold.
2001. Prioritizing test cases for regression testing. IEEE Transactions on software
engineering 27, 10 (2001), 929–948.

[33] Xiaolin Wang and Hongwei Zeng. 2016. History-based dynamic test case priori-
tization for requirement properties in regression testing. In Proceedings of the
International Workshop on Continuous Software Evolution and Delivery. 41–47.

[34] Rahul Krishna Yandrapally and Ali Mesbah. 2022. Fragment-based test generation
for web apps. IEEE Transactions on Software Engineering 49, 3 (2022), 1086–1101.

[35] Zhe Yu, Fahmid Fahid, Tim Menzies, Gregg Rothermel, Kyle Patrick, and Snehit
Cherian. 2019. TERMINATOR: Better automated UI test case prioritization. In
Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 883–894.

[36] Zhi Quan Zhou, Chen Liu, Tsong Yueh Chen, TH Tse, and Willy Susilo. 2020.
Beating random test case prioritization. IEEE Transactions on Reliability 70, 2
(2020), 654–675.

[37] Zhi Quan Zhou, Arnaldo Sinaga, and Willy Susilo. 2012. On the fault-detection
capabilities of adaptive random test case prioritization: Case studies with large
test suites. In 2012 45th Hawaii International Conference on System Sciences. IEEE,
5584–5593.

Received 2024-04-12; accepted 2024-07-03

	Abstract
	1 Introduction
	2 Motivation
	2.1 Examples and Observations
	2.2 Key Ideas

	3 Segment-based Test Case Prioritization
	3.1 Coverage Information Extraction
	3.2 Overview of Multi-objective Optimization
	3.3 Multi-objective Optimization Formulation

	4 Empirical Evaluation
	4.1 Research Questions
	4.2 Baseline Approaches
	4.3 Evaluation Metrics
	4.4 Dataset
	4.5 Experimental Setup

	5 Experimental Results
	5.1 Comparison with Other TCP Approaches on Fault Detection Rate (RQ1)
	5.2 Comparison Results with other TCP Approaches on Fault Coverage (RQ2)
	5.3 Comparison of TCP Approaches on Test Redundancy (RQ3)
	5.4 Time Efficiency (RQ4)
	5.5 Statistical Tests

	6 Related Work
	7 Conclusion
	References

