
Using LLM for Mining and Testing Constraints in API Testing
Minh-Hieu Huynh

Katalon LLC

Ho Chi Minh City, Vietnam

minhhieu2214@gmail.com

Quoc-Tri Le

Katalon LLC

Ho Chi Minh City, Vietnam

lqtri691@gmail.com

Tien N. Nguyen

Computer Science Department

University of Texas at Dallas

Texas, USA

Tien.N.Nguyen@utdallas.edu

Vu Nguyen

University of Science, VNU-HCM

Katalon LLC

Ho Chi Minh City, Vietnam

nvu@fit.hcmus.edu.vn

CCS Concepts
• Software and its engineering→ Software testing and debug-
ging.

Keywords
Large Language Models, API Testing

ACM Reference Format:
Minh-Hieu Huynh, Quoc-Tri Le, Tien N. Nguyen, and Vu Nguyen. 2024.

Using LLM for Mining and Testing Constraints in API Testing. In 39th
IEEE/ACM International Conference on Automated Software Engineering (ASE
’24), October 27-November 1, 2024, Sacramento, CA, USA. ACM, New York,

NY, USA, 2 pages. https://doi.org/10.1145/3691620.3695341

1 Problem
Testing Representational State Transfer (REST) APIs is crucial for

ensuring the reliability and performance of APIs, which are essential

to modern web services. This testing process helps identify and

resolve issues related to data exchange and integration with other

systems. Among the various API testing techniques, black-box

testing relies on the OpenAPI Specification (OAS) to generate test

cases and data. However, current API test automation methods are

primarily focused on status code [10] and schema validation [1].

Status code validation involves ensuring that each HTTP request

returns a response with a status code, a three-digit integer that

indicates the outcome of the request. Schema validation verifies

the correctness of the response data by comparing it to the schema.

This includes checking that all required properties are present and

that data types of these properties align with the schema specified.

While status code and schema validation are effective in ensur-

ing correct data representation and status verification, they may

miss issues related to the logical correctness and validity of the

response data. For instance, if an API request asks for a flight be-

fore January 1, 2025, but the response provides a flight after that

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-1248-7/24/10

https://doi.org/10.1145/3691620.3695341

date, this discrepancy would not be caught by simply validating the

status code or schema. Such constraints are critical to maintain the

logical integrity and accuracy of results returned from APIs, which

is essential for ensuring reliable operations. Current RESTful API

testing approaches are limited in addressing this aspect.

2 Approach
We introduce APITesting, an approach designed to mine con-

straints from response bodies and generate test cases to validate

these constraints. To achieve this, we utilize the capabilities of

large language models (LLMs) to interpret natural language de-

scriptions found in API specifications. These specifications often

contain constraints on response bodies and operations, with the

schema providing constraints on properties and descriptions of the

returned object as a whole. Furthermore, we leverage LLMs’ profi-

ciency in generating source code to automatically create test cases

based on the mined constraints, ensuring that the system under

test correctly returns content that adheres to these constraints.

Our approach involves two steps: Constraints Mining and Con-

straints Test Generation. First, we use the OpenAPI/Swagger Specifi-

cation as input for Constraints Mining, where we extract constraints
from the natural language descriptions within the OAS file. Since

constraint descriptions can appear in various sections of the OAS,

we start by applying heuristics to extract descriptions related to

operations, parameters, and response properties. We then employ

an LLM to identify constraints from these descriptions. Second, the

identified constraints serve as input for the LLM to perform Test
Case Generation, producing code snippets that test these constraints.
Each recognized constraint is paired with a snippet to verify that

the response data aligns with the specified constraints.

Constraints Mining. To validate the response body of an API end-

point, we note that the API specification typically consists of two

main components: the request specification (the API’s input) and
the response schema specification (the API’s output).

1. The request specification outlines how to call the API end-

point, detailing the required input parameters, their roles, and the

parameters within the request body, along with their respective

functions. It may also include a description of the API’s operations.
2. The response schema specification provides guidelines on the

response data, describing each property in the response, its datatype,
nullability, and other relevant details.

2486

2024 39th IEEE/ACM International Conference on Automated Software Engineering (ASE)

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3691620.3695341&domain=pdf&date_stamp=2024-10-27


ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Hieu Huynh, Quoc-Tri Le, Tien N. Nguyen, Vu Nguyen

For constraints from response specifications, we first examine

the descriptions within the response schema specification, as these

descriptions provide the most straightforward constraints by di-

rectly mapping each property. In an OpenAPI specification, each

endpoint specification contains a response schema specification

that instructs clients on how to parse the data returned by the

server in response. This response data specification structures the

response object through its properties, including their descriptions.

Constraint Test Generation. Constraint tests are generated using an

LLM and are tailored to two types of constraints identified earlier:

Request-Response constraints and Response Property constraints.

Request-Response constraints involve conditions based on the re-

quest parameter descriptions, while Response Property constraints

are directly derived from the response schema’s description.

These tests evaluate a response body alongside the request details

and produce an outcome categorized as ‘matched,’ ‘mismatched,’ or

‘unknown.’ A ‘matched’ outcome indicates that the response body

complies with the identified constraint. A ‘mismatched’ outcome

indicates that the response body fails to meet the constraint. An ‘un-

known’ outcome suggests that the response data does not include

the property associated with the constraint, potentially because

this property is optional in the specification.

1) Request-Response Constraints Testing
The Request-Response Constraint Test involves identifying a

dependency between a constrained request parameter and the cor-

responding response property that reflects this constraint. To gen-

erate a test case for this scenario, we use a prompt to the LLM. This

prompt requires four inputs: the parameter’s name, the description

of the parameter constraint, the corresponding property’s name,

and the response data schema.

We task the LLM with generating a validation function that ac-

cepts two parameters: the response body and the request parameter.
The LLM’s job is to create a script that checks the conditions be-

tween these two inputs. For example, to validate a ‘created’ time

interval, the LLM needs to extract the ‘created’ time from the re-

sponse body and the conditional values from the request parameter,

such as ‘created[gte]‘ (greater than or equal to) and ‘created[lte]‘

(less than or equal to). It should then generate a logical comparison

between these values.

2) Response Property Constraints Testing
The Response Property Constraint Test directly correlates the

property’s description with the property itself. To create a test

case for this constraint, we utilize a specific prompt. This prompt

requires three inputs: the property name, the constraint description,

and the response data schema. The description extracted from the

previousmining step gives the necessary information for generating

constraint verification code, while the response data schema defines

the structure and type of the expected data. This schema guides

LLM in generating code to parse response data.

3 Related Work
Analysis of recent surveys on API testing [5, 7] reveals a clear trend

towards automation adoption. Advancements in AI and ML have

enhanced various aspects of API testing including of generating ro-

bust test cases [10], realistic test inputs [2], and to identify potential

defects early in the development cycle [3].

KAT [8] leverages the language understanding capabilities of

GPT to fully automate the API testing process using only an input

OpenAPI specification. Kim et al. [6] applied GPT to augment Ope-

nAPI specifications, enriching them with explanations of rules and

example inputs generated by LLMs.

ARTE [2] aimed to generate test inputs for API testing, employ-

ing NLP, search-based, and knowledge extraction. Morest [9] is a

model-based RESTful API testing method using a dynamically up-

dating RESTful-service Property Graph. RESTler [4] is an automatic

tool for stateful fuzzing of REST APIs, which analyzed OpenAPI

specifications, inferred dependencies among request types, and

dynamically generated tests guided by feedback from service re-

sponses using a test-generation grammar. RestTestGen [10] applied

OpenAPI specifications for generating test cases, employing heuris-

tics to ensure the robustness of the generated code by checking

both response status codes and response data schemas.

4 Conclusion
This paper presents APITesting, a method for mining constraints

fromAPI response bodies and generating test cases to validate these

constraints. By leveraging LLMs to understand descriptions in API

specifications, APITesting generates test cases. Empirical results

show that it achieves an average precision of 94.3% in constraint

mining and up to 88.5% in test generation for constraint validation.

Acknowledgments
We thank Katalon inc. for sponsoring this research. Additionally,

Tien N. Nguyen is supported in part by the US NSF grant CNS-

2120386 and the NSA grant NCAE-C-002-2021, and Vu Nguyen is

partially funded by the Faculty of Information Technology, Univer-

sity of Science, VNU-HCMand the Vingroup Innovation Foundation

(VINIF) under the grant number VINIF.2021.JM01.N2.

References
[1] 2024. Postman API Testing Tool. https://www.postman.com/

[2] Juan C Alonso, Alberto Martin-Lopez, Sergio Segura, Jose Maria Garcia, and

Antonio Ruiz-Cortes. 2022. ARTE: Automated Generation of Realistic Test Inputs

for Web APIs. IEEE Transactions on Software Engineering 49, 1 (2022), 348–363.

[3] Andrea Arcuri and Juan P Galeotti. 2021. Enhancing search-based testing with

testability transformations for existing APIs. ACM Transactions on Software
Engineering and Methodology (TOSEM) 31, 1 (2021), 1–34.

[4] Vaggelis Atlidakis, Patrice Godefroid, and Marina Polishchuk. 2019. Restler:

Stateful rest api fuzzing. In 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). IEEE, 748–758.

[5] Amid Golmohammadi, Man Zhang, and Andrea Arcuri. 2023. Testing RESTful

APIs: A Survey. ACM Trans. Softw. Eng. Methodol. 33, 1, Article 27 (nov 2023),

41 pages. https://doi.org/10.1145/3617175

[6] Myeongsoo Kim, Tyler Stennett, Dhruv Shah, Saurabh Sinha, and Alessandro

Orso. 2024. Leveraging large language models to improve REST API testing.

In Proceedings of the 2024 ACM/IEEE 44th International Conference on Software
Engineering: New Ideas and Emerging Results. 37–41.

[7] Myeongsoo Kim, Qi Xin, Saurabh Sinha, and Alessandro Orso. 2022. Automated

test generation for rest apis: No time to rest yet. In Proceedings of the 31st ACM
SIGSOFT International Symposium on Software Testing and Analysis. 289–301.

[8] Tri Le, Thien Tran, Duy Cao, Vy Le, Vu Nguyen, and Tien N. Nguyen. 2024. KAT:

Dependency-aware Automated API Testing with Large Language Models. In 2024
IEEE Conference on Software Testing, Verification and Validation (ICST). IEEE.

[9] Yi Liu, Yuekang Li, Gelei Deng, Yang Liu, Ruiyuan Wan, Runchao Wu, Dandan

Ji, Shiheng Xu, and Minli Bao. 2022. Morest: model-based RESTful API testing

with execution feedback. In Proceedings of the 44th International Conference on
Software Engineering. 1406–1417.

[10] Emanuele Viglianisi, Michael Dallago, and Mariano Ceccato. 2020. Resttest-

gen: automated black-box testing of restful apis. In 2020 IEEE 13th International
Conference on Software Testing, Validation and Verification (ICST). IEEE, 142–152.

2487


