
A DOM-structural Cohesion Analysis Approach
for Segmentation of Modern Web Pages

Hieu Huynh1, Quoc-Tri Le1, Vu Nguyen1,2,3, and Tien Nguyen1,4

1 Katalon Inc.
{hieu.huynh,tri.qle,vu.nguyen}@katalon.com

2 University of Science
3 Vietnam National University, Ho Chi Minh City, Vietnam

nvu@fit.hcmus.edu.vn
4 University of Texas at Dallas, Texas, USA

tien.n.nguyen@utdallas.edu

Abstract. Web page segmentation is a fundamental technique applied
in information retrieval systems to enhance web crawling tasks and infor-
mation extraction. Its objectives are to gain deep insights from crawling
results and to extract the main content of a web page by disregarding
the irrelevant regions. Over time, several solutions have been proposed to
address the segmentation problem using different approaches and learn-
ing strategies. Among these, the structural cue, which is a characteristic
of the DOM tree, is widely utilized as a primary factor in segmenta-
tion models. In this paper, we propose a novel technique for web page
segmentation using DOM-structural cohesion analysis. Our approach in-
volves generating blocks that represent groups of DOM subtrees with
similar tag structures. By analyzing the cohesion within each generated
block and comparing detailed information such as types, attributes, and
visual cues of web page elements, the approach can effectively main-
tain or reconstruct the segmentation layout. Additionally, we employ the
Canny algorithm to optimize the segmentation result by reducing redun-
dant spaces, resulting in a more accurate segmentation. We evaluate the
effectiveness of our approach using a dataset of 1,969 web pages. The
approach achieves 64% on the FB3 score, surpassing existing state-of-
the-art methods. The proposed DOM-structural cohesion analysis has
the potential to improve web page segmentation and its various applica-
tions.

Keywords: Web Page Segmentation · Web Page Analysis · Tree Edit
Distance.

1 Introduction

Web page segmentation is the process of dividing a web page into smaller
meaningful regions or segments such as the header, navigation menu, content
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area, sidebar, footer, and other elements. It is based on a web page’s content,
structure, and visibility that humans can perceive.

Web page segmentation has been applied for various purposes, with a promi-
nent application in information retrieval systems to distinguish valuable content
from irrelevant content on a web page. This segmentation process is utilized to
enhance crawling (detecting templates [30, 35, 3], duplicates [23, 25], and changes
[9, 20]) and for information extraction tasks (indexing [1], main content extrac-
tion [32, 36], and entity mining [21]). For example, instead of extracting only
an image, we consider extracting the region that contains the image, allowing
us to combine additional relevant information and gain more insights from the
crawling result [5]. In the field of information extraction, segmentation can be
used for extracting main contents by ignoring regions that contain noise, such
as advertisements, or unrelated parts like headers, menus, and navigation bars
[29]. Furthermore, in other areas, such as test automation, dividing web pages
into regions for page comparison plays a crucial role in generating reliable test
oracles [33].

Over time, many solutions have been proposed to address the segmentation
problem using different approaches and learning strategies. The most commonly
used techniques fall into several categories: ad-hoc approaches [7, 31, 6, 20, 27]
(which rely on manually-tuned heuristics and parameter-dependent methods),
theoretically-founded approaches [9, 1] (based on graph-theoretic and classical
clustering algorithms), computer vision approaches [13, 11], and others (as men-
tioned in [15]). In general, these approaches share three key elements: visual,
textual, and structural cues found on web pages. Among other features, struc-
tural is most widely utilized in various approaches. The structural cue involves
approaches that take the DOM (Document Object Model) tree as an input.
Due to various information comprised in the DOM tree, several well-known ap-
proaches have employed DOM as the main feature of their works, including
algorithms such as the VIsion-based Page Segmentation (VIPS) [7], Block-o-
Matic (BoM) [27], Jiang et al. [16], and Xiang et al. [31]. However, most of these
algorithms rely on hand-crafted parameters [27, 7] or hard-configured rules [7].

These parameter-dependent or rule-based approaches have limitations in
adaptability and robustness. They often require domain knowledge and fine-
tuning, which is not fully automated and may not yield optimal results when
applied on different web pages. Taking into account these limitations, our ap-
proach aims to overcome the reliance on human-tuning parameters by employing
flexible techniques that adapt to the characteristics of each website being ana-
lyzed.

In this research, a novel DOM-structural analysis using a statistical method
is proposed. The proposed method involves the following steps: (1) generating
blocks that are DOM subtrees with similar tag structures, (2) analyzing the
cohesion in each block to keep the block in segmentation layout or reconstruct it,
the detailed information in the web page elements as type, attributes, and visual
cues will be deeply compared to identify the block cohesion, and (3) applying



A DOM-based Web Page Segmentation 3

the Canny algorithm [8] to reduce redundant spaces in the block for a more
user-friendly layout.

We conduct a comprehensive assessment of our method including both quan-
titative and qualitative analyses. In the quantitative aspect, we evaluate our
approach using a dataset comprising 1,969 web pages sourced from the Webis-
WebSeg-20 dataset [17]. Our results demonstrate a notable performance, with
our method achieving a 64% FB3 score, surpassing VIPS and MMDetection
by 19% and 10%, respectively, on the same dataset. For qualitative evaluation,
our method outperformed the two compared methods, consistently receiving the
highest rankings across the assessments conducted by five independent evalua-
tors.

Our primary contributions to this paper include:

– Introduction of a novel DOM-structural analysis using a statistical method
for Web Page Segmentation, this research bridges the gap created by human-
tuning parameters in existing approaches.

– Execution of a comprehensive experiment covering both qualitative and
quantitative aspects, wherein we compare our proposed approach to other
state-of-the-art methods. The results demonstrate a significant improvement
in the effectiveness of our approach.

2 Motivating Example
Modern websites undergo frequent changes in their display, such as updating
information and responsive user interface. This poses a significant challenge for
web page segmentation methods that rely heavily on visual characteristics. The
following example shows a limitation of a vision-based method represented by
VIPS.

(a) PDoC = 6, window width = 1960,
height = 993

(b) PDoC = 6, window width =
1600, height = 993

Fig. 1: VIPS segmentation results with different window sizes.

Figure 1 showcases two VIPS segmentation results obtained using different
window sizes with the red rectangles representing segments. The segmentation
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outcome is influenced by two primary factors: the extraction of visual blocks
and the identification of horizontal and vertical separators within these blocks.
In our investigation, we reduced the window size of the web page to observe a
minor visual change. Surprisingly, the segmentation also changed, even though
all other configurations remained the same. This limitation becomes apparent
when performing information extraction tasks since the extracted contents are
inconsistent, despite the web page’s content remaining unchanged.

Based on this experiment, we have concluded that visual characteristics alone
are not sufficient to solve the web page segmentation problem. Instead, we have
shifted our focus toward DOM-structural analysis. Our approach integrates vi-
sual cues (text, visibility, etc.) for structural analysis under the DOM node’s at-
tributes, disregarding invisible elements on web pages. By taking this approach,
we aim to overcome the limitations observed with purely visual-based methods.

3 Method
Our approach to web page segmentation relies on identifying regions or segments
that have structurally similar elements and highlighting them with correspond-
ing zones on a snapshot of the web page. The output of our proposed method
is a list of DOM nodes (DOM-subtrees) extracted from the web page, referred
to as a DOM-driven layout. This output is highly valuable for web information
retrieval as the DOM tree represents the complete information of a web page,
enabling us to extract all the relevant content. Similarly, each segment is repre-
sented by a DOM-subtree that contains all the necessary information that can
be extracted from that specific segment. For result visualization, in some cases,
the DOM node’s visual block displays in an unexpected manner on the web
page’s screenshot. For example, it does not cover all inside elements’ content or
contains redundant spaces (i.e., borders, paddings). To tackle this problem, we
perform a further task to create an appearance-driven layout by employing the
Canny algorithm (3.3).

(DOM Tree) Block generation

DOM-driven layoutVisual optimization

(Web Page)

Appearance-driven
layout

Rendering &
Constructing

(D with marked blocks)

Outlier block
elimination

Fig. 2: Segmentation model

The segmentation process begins by taking the URL of a web page (W )
and generating a DOM tree (D) through rendering and constructing. By identi-
fying DOM nodes with similar tag structures, we construct a modified DOM
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tree (Db) that marks these nodes as blocks. To identify the desired regions
within the DOM-driven layout, we analyze the cohesion or homogeneity of these
blocks. Finally, we aim to optimize the geometry of each region on the web
page’s screenshot, aligning it more closely with the human perspective in the
Appearance-driven layout version.

3.1 Block generation

In this section, we provide a detailed explanation of the block generation process
mentioned in Figure 2. The objective of this step is to identify the nodes that
have children with similar structural characteristics and mark these nodes in the
DOM tree (Db).

Definition 1 (A DOM-block tree (Db)). is the original DOM tree where
each node is marked as a block or not.

<html>

<head><body>

<div> <div>

<a>

<img> <div> <div>

<a>

<img> <div> <div>

Block 1 Block 2

<table> <table> <table>

Fig. 3: Example of block generation.

Figure 3 shows an example of how block nodes are identified. We define the
blocks to be a DOM node that contains children with a similar structure, which
is illustrated as the red zone in Figure 3. For employing the breadth-first search
traversal, we first initialize a queue with the root node of the tree (e.g., body
node). For every element in the queue, we compare its structure to the left and
right siblings. If an element has no sibling or its structure does not match, the
children of the current element will be added to the queue. Otherwise, the current
element is marked as a block node as it contains a similar structure and remove
from the queue. This loop will be executed until the queue is empty.

The structure matching we employ here uses only the skeleton structure that
considers and includes only distinct elements. For instance, the full structure of
Block 1 (Figure 3) is div[a[img, div, div], a[img, div, div]], and skele-
ton structure for this block is div[a[img, div]], which excludes duplicated
elements. Two structures match if they have the same skeleton structure.

In this stage, we aim to scan the whole tree to get all possible blocks. The
output of this step is a DOM-block tree. It is possible that some blocks are either
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Algorithm 1: Outlying block elimination
1 Function BlockEliminator(node):
2 Sblocks = ∅
3 if node.isOutlier then
4 for child in node.children do
5 if child.isBlockNode then
6 Sblocks.insert(BlockEliminator(child))
7 else
8 Sblocks.insert(child)
9 end

10 end
11 else
12 if node.isBlockNode then
13 Sblocks.insert(node)
14 end
15 end
16 return Sblocks

17 Blocks, Hs ← GetHeterogeneity(root)
18 MarkOutliers(Blocks, Hs)
19 Sblocks ← BlockEliminator(root)

too large and contain other blocks or too small. The blocks that are of little
importance are known as outlying blocks and will be dealt with in the upcoming
phase called outlying block elimination.

3.2 Outlying block elimination

As mentioned earlier, we propose a statistical method to obtain desired blocks
from a hierarchical block layout. The method is based on the cohesion of the
blocks determined during the previous generation process. A larger block may
internally contain more distinct structures, resulting in low homogeneity (high
heterogeneity) in structure. In such cases, the corresponding blocks should be
removed and replaced by their child blocks. Assuming that we have identified
blocks with high heterogeneity in structure (referred to as outlying blocks), Al-
gorithm 1 demonstrates how we eliminate outliers based on the result of their
heterogeneity analysis.

Definition 2 (The segmentation blocks (Sblocks)). is the set of blocks
obtained after filtering out the outliers.

Before proceeding to the heterogeneity analysis process, we observe the hi-
erarchical blocks represented as a flattened list of blocks. The objective of the
analysis is to determine the heterogeneity score for each generated block.

Definition 3 (The heterogeneity score (H)). of a block is derived by
evaluating the dissimilarity in the structure of its children. To determine this
score, the Tree Edit Distance (TED) algorithm [26] is utilized to compare each
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Algorithm 2: Heterogeneity Analysis
1 Function GetHeterogeneity(node):
2 Blocks, Hs ← ∅
3 if ! node or ! node.isBlockNode then
4 return
5 if ! node.children then
6 Blocks.insert(node)
7 Hs.insert(0)
8 else
9 H ← Heterogeneity (node.children)

10 Blocks.insert(node)
11 Hs.insert(H)
12 for child in node.children do
13 childAnalysis ← GetHeterogeneity(child)
14 if childAnalysis is not None then
15 Blocks.insert(childAnalysis[0])
16 Hs.insert(childAnalysis[1])
17 end
18 end
19 end
20 return Blocks, Hs

pair of children, and the resulting metric is represented by the standard deviation
of the edit distance cost for these pairs.

Ci,j = TED(Childi, Childj),∀i, j ∈ N; i, j ≤ N

Hblock = StandardDeviation(C)
(1)

– N : Number of children or elements of a block node.
– C: A edit distance cost matrix, where each value in the matrix represents

the cost of the best sequence of actions to transform Childi to Childj .

The tree edit distance refers to the sequence of node edit operations with
the lowest cost necessary to convert tree F into G. The typical edit operations
include removing a node, adding a node, and changing the label of a node. In this
paper, we employed the state-of-the-art TED algorithm called APTED, which
has demonstrated its effectiveness not only in various web research [4, 33, 34]
but also in Android studies [28]. APTED allows us to achieve memory-efficient
strategy computation, encompassing all paths without limitations, and ensuring
optimal strategy computation within memory bounds of distance computation.
Additionally, APTED facilitates fast computation for small subtrees, minimiz-
ing overhead associated with expensive single-path functions of RTED, thereby
enhancing overall algorithm efficiency.

A higher H score for a block indicates a more distinct internal structure
within the block, indicating an outlying block. The H score is computed using
Algorithm 2.
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0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

B1 = {⃝,⃝,⃝,⃝}
HB1 = 0

0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0

B2 = {⃝,□,□,⃝}
HB2 = 0.5

0 1 1 2

1 0 0 3

1 0 0 3

2 3 3 0

B3 = {⃝,□,□,△}
HB3 = 1.2

Fig. 4: The heterogeneity score (H) reflects the dissimilarity in the struc-
ture within each block (B). Assuming, TED(⃝,⃝) = 0, TED(⃝,□) =
1, TED(⃝,△) = 2, TED(□,△) = 3

Figure 4 shows a toy example of how H scores vary in different cases. The
elements ⃝,□,△ belong to a block, and the edit distance cost between each
pair of elements is different. In this case, B1 contains only one type of element,
resulting in the minimum H score. Conversely, B3 contains all types of assumed
elements, leading to the maximum H score. In more complicated cases, the edit
distance cost can be larger than in the example, depending on the differences
between each pair of DOM subtrees within a block.

Based on the result of the heterogeneity analysis (Algorithm 2), the question
arises: How can we determine the threshold to identify outlying blocks by H
scores? To address this research question, we propose a statistical method that
is free from predefined thresholds. This method utilizes the Interquartile Range
(IQR) to assess the heterogeneity score of each block. By employing the IQR,
we can effectively identify outliers within the generated blocks.

The identification of outliers is performed by the MarkOutliers function
(Line 16, Algorithm 1). The MarkOutliers function takes two inputs: the set of
block nodes (blocks) and their corresponding H scores (Hs). This function uses
the Interquartile Range (IQR) method to identify outliers in H scores. Blocks
with H scores exceeding the IQR threshold are flagged as outliers. Subsequently,
the BlockEliminator function (Line 17, Algorithm 1) function traverses from
the root nodes to obtain the nodes that are block nodes and are not flagged as
outliers. This function returns the set of segmentation blocks Sblocks.

3.3 Visual optimization

Definition 4 (A segmentation region (Sr)). is a segmentation block whose
bounding box has been improved to be more suited for the screenshot of the web
page. The bounding box’s empty spaces is removed, and the original bounding
box is cropped to match the screenshot’s representation of the region’s content.

Figure 5a demonstrates that practically all segmentation blocks in the DOM-
driven layout version have additional vacant spaces (i.e., borders, paddings) in-
side, which, in our opinion, lowers the segmentation layout’s quality even further.
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(a) DOM-driven layout (b) Appearance-driven layout

Fig. 5: Example of a visually optimized layout segmentation

We employ the Canny algorithm [8] to optimize bounding boxes by reducing the
redundant space. The bounding box is shrinked down until it reaches edges
detected by the Canny algorithm. The optimized segmentation layout is more
comprehensible and reduces redundant zones in each section, as shown in Figure
5b.

4 Quantitative Evaluation

4.1 Dataset

We conduct our evaluation on the Webis-WebSeg-20 [17] dataset, which is the
largest publicly accessible set of data in terms of web segmentation. The dataset
contains more than 8,000 web pages from more than 5,500 different domains.
The websites are well distributed from top-ranked to low-ranked websites by
Alexa ranking to ensure the diversity in data.

For each data instance, the authors provided an HTML file to store the DOM
structure of the web page and a screenshot of the whole page. Theoretically, the
position of every DOM node in the HTML file in the dataset is stored in another
metadata file along with the respective absolute XPath. This is to make sure that
we do not need to re-render the web page and guarantee that the position of
every node matches the corresponding position in the ground truth.

However, while reviewing the data, we realized that the XPaths in the meta-
data were constructed incorrectly. As they only count the index of visible siblings
while ignoring the invisible ones. Therefore, in an HTML file, if there is a node
that is invisible, the following sibling nodes would be mis-indexed. When recon-
structing the XPath of nodes in the HTML file without rendering, we are unable
to identify whether an HTML element is visible. As a result, it is impossible
to map the nodes to the corresponding XPath in the dataset. To resolve this
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problem, we decided to filter out the data instances that are indexed XPath
incorrectly.

Algorithm to filter the data: Let X represent the set of provided XPaths,
and X∗ denote the set of actual XPaths. We define P as the set of tuples (x, p)
where x belongs to X and p is the rendered position of x on the page, P =
{(x, p) | x ∈ X }. Our objective is to create a set M = {(x, x∗)} , which
represents the one-to-one mapping between XPaths in the provided set X and
their corresponding XPaths in the actual set X∗. Each element in M is a tuple
(x, x∗), where x is an XPath from X, and x∗ is the corresponding XPath from
X∗. For each x in X, we aim to map it to the least greater-indexed x∗ in X∗

that possesses the same skeleton. As the index of x does not count the invisible
nodes, it is always smaller than or equal to the actual index. Once all mappings
are established, we check for any duplicated x∗ values across all mappings. If
duplicates are found, we eliminate the corresponding data instance as it fails to
comply with the rules.

As a result, there are 1,969 data instances that are indexed correctly, and we
use this set to evaluate our approach.

4.2 Metrics
We adopted a comprehensive framework for assessing the performance of web
page segmentation algorithms [17]. This approach allows us to enhance the com-
parability and consistency of our method’s performance with other evaluated
models that have been tested on the same dataset.

Unlike other image segmentation problems, web segmentation might produce
a tree-structured segmentation result with different granularity levels that make
a segment bigger or smaller. As a result, a ground truth segment may contain
several predicted segments and vice versa. Therefore, this evaluation framework
considers web page segmentation as a clustering task where each web page ele-
ment is clustered into a group.

In the context of clustering, defining a similarity function is essential as it
allows us to quantify the distance or dissimilarity between elements within a
cluster. In such a manner, Kiesel et al. [17] have introduced the atomic element
concept; they are (1) pixels, (2) DOM nodes, and (3) characters. The authors
adapt the extended BCubed measurement from clustering, which examines the
PB3 (Equation 2), RB3 (Equation 3), and FB3 (Equation 4) for each data in-
stance [17].

To recapitulate, in the same manner of common precision, PB3 calculates
the ratio of true positive segments (segments that are in both ground truth and
predicted segmentation) to all of the positive segments (segments that are in
the predicted segmentation). Likewise, RB3 calculates the ratio of true positive
segments to all of the positive segments in the ground truth. And FB3 is the
harmonic mean of PB3 and RB3 . FB3 satisfies all the necessary criteria for a
segmentation similarity measure. It effectively handles partial segmentations,
overlapping segments, and even nested segments. Additionally, FB3 is resilient
against trivial segmentations, such as under-segmentation, which divides the
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whole page as a segment, or over-segmentation, which consider every atomic
element as a segment.

PB3(S, S∗) =
1

|ES |
∑
e∈ES

(
1

|ES
e |

∑
e′∈ES

min(|Se ∩ Se′ |, |Se ∩ S∗
e′ |)

|Se ∩ Se′ |

)
(2)

RB3 (S, S∗) = PB3 (S∗, S) (3)

FB3 (S, S∗) =
2×RB3 (S, S∗)× PB3 (S, S∗)

RB3 (S, S∗) + PB3 (S, S∗)
(4)

Let S, S∗ be the set of prediction segments and ground truth segments re-
spectively, Se be the set of segments that contains element e, ES be the set of
elements that belong to at least one segment in S. In the mathematical terms,
Se = {s | s ∈ S ∧ e ∈ s}, ES = {e | e ∈ E ∧ Se ̸= ∅}, and ES

e = {e′ | e′ ∈
E ∧ Se ∩ Se′ ̸= ∅}. The set of elements e is denoted as E. At the pixels atomic
level, each pixel in the page’s screenshot is represented by e. There are also two
subsets of pixels known as edges-fine and edges-coarse, which utilize the edge
image generated by the Canny algorithm [8]. Regarding nodes, E pertains to the
collection of DOM nodes within the tree structure. As for chars, it represents
the set of characters shown on the page.

4.3 Experimental setup
We use the evaluation results from [17] to compare with our algorithm. The
experiment and parameter setup for each algorithm are summarized as follows.

– Baseline: To provide context, the performance of the algorithms is com-
pared to a naive approach of segmenting a web page into a single segment,
which always reaches a maximum recall of 1 but the lowest precision.

– VIPS: VIPS [7] creates a hierarchical tree of segments based on the DOM
tree of the page. Segments are split based on their degree of coherence, de-
termined by heuristic rules considering tag names, background colors, DOM
node sizes, and visual separators. The single parameter that influences the
algorithm is the permitted degree of coherence (PDoC). The higher PDoC
is, the lower precision it be. After experimentation, it was determined that
the optimal value for PDoC is 6.

– HEPS: Kiesel et al. [18] adapt HEPS [22] to the task of web page seg-
mentation. HEPS employs heuristic rules considering DOM tree positions,
tag names, font sizes, and font weights to identify headings and their corre-
sponding segments. Kiesel et al. [18] then merge the extracted headings with
segments and extract the bounding box coordinates instead of text segments.

– Cormer: Cormer et al. [13] developed a visual algorithm for web page seg-
mentation based on edge detection. It calculates the probability of significant
edges and composes line segments. The algorithm recursively splits segments
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based on the most semantically significant lines. It depends on two parame-
ters which are tl (maximum line length) and smin (minimum segment size);
the best setting (tl = 512, smin = 45) was used for further experiments.

– Meier: Meier et al.’s [24] convolutional neural network is cutting-edge in
segmenting digitized newspaper pages. Kiesel et al. [18] re-implemented it
using text node positions instead of OCR. Uniform height (4096 pixels) and
scaling (256x768 pixels) were applied. The training utilized 10-fold cross-
validation, stopping after 20.8 epochs on average.

– MMDetection: MMDetection [12] is a widely-used computer vision tool
originally designed for image segmentation. To adapt it for web page seg-
mentation, we apply additional post-processing step by mapping each pixel
mask to the nearest DOM node. This adaptation is necessary because the
pixel masks produced by standard image segmentation models are not di-
rectly compatible with the structure of web pages. In cases where MMDe-
tection fails to detect any segments, the entire page is treated as a single
segment to ensure coverage.

– Segment Anything (SAM): Meta’s Segment Anything Model [19] is a
zero-shot image segmentation algorithm. Trained on a dataset comprising
over 11 million images, SAM exhibits generalization capabilities, allowing it
to perform zero-shot segmentation across diverse and challenging domains
without any additional training. Its effectiveness is demonstrated across var-
ious complex datasets, including underwater imagery and medical images
such as X-rays. However, SAM has yet to be evaluated using images of web
pages. In this study, we aim to assess SAM’s performance in WPS and bench-
mark it against other state-of-the-art methods. Since both MMDetection and
SAM are computer vision-based approaches that generate pixel masks, we
apply the same post-processing step (mapping pixel masks into DOM nodes)
for SAM to ensure a fair comparison.

For our experiments, we used an NVIDIA T40 GPU. We employed the same
configuration and ViT-H checkpoint used in the original SAM paper, ensuring
consistency with their experimental setup.

4.4 Results
Table 1 shows the evaluation results of our proposed method and seven other
algorithms including the baseline, VIPS, HEPS, Cormer, Meier, MMDetection,
and SAM. Since the size of the dataset was reduced to nearly 1/4 as compared
to the original one, we also filtered the evaluation data on those selected ones
and recalculated the RB3 , PB3 , FB3 , and F ∗

B3 for each atomic element type.
Notably, we observed that the results for each metric exhibited only a slight
variation, with changes of less than 5% for each of them, while the overall score
distribution remained unchanged.

The baseline method provides the most trivial segmentation, which considers
a whole web page as a single segment that covers all of the ground truth segments.
Thus, it reaches the maximum RB3 of 1 across 4 types of atomic. Obviously, the
PB3 achieves a fairly low score, resulting in the lowest FB3 and F ∗

B3 scores.
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Table 1: The results of 8 algorithms include 6 algorithms that we reuse the results
from Kiesel et al. [18], SAM and ours. For each kind of atomic element, we provide
four metrics, including F-bcubed (FB3), Precision (PB3), Recall (RB3), and the
harmonic mean of the averaged PB3 and RB3 . The bold values show the highest
values among all, excluding the baseline.

Metric Baseline VIPS HEPS Corm. MMD. Meier SAM Ours

Pixels

PB3 15 33 31 31 48 47 48 60
RB3 100 69 62 89 59 55 64 68
FB3 23 37 31 32 41 33 44 51
F ∗
B3 26 45 42 46 53 50 55 64

Chars

PB3 44 81 72 56 80 61 85 83
RB3 100 73 56 91 60 66 63 71
FB3 57 70 53 61 61 53 67 68
F ∗
B3 61 77 63 70 68 63 72 76

Nodes

PB3 32 72 61 47 77 53 79 75
RB3 100 72 52 90 52 63 49 67
FB3 45 66 46 52 54 46 54 62
F ∗
B3 49 72 56 62 62 57 60 71

Edges
-fine

PB3 33 67 58 48 73 55 74 75
RB3 100 71 61 89 55 59 56 70
FB3 46 61 49 51 55 43 57 63
F ∗
B3 50 69 59 62 63 57 64 72

Edges
-coarse

PB3 33 68 58 49 73 54 75 75
RB3 100 71 61 89 55 59 57 69
FB3 46 62 49 52 55 43 58 63
F ∗
B3 50 70 60 63 63 57 65 72

Considering the PB3 score, our algorithm achieves the highest values for
every atomic type except for nodes and chars. The chars category attains the
highest PB3 score among all categories, reaching 83%. Regarding the FB3 and
F ∗
B3 scores, our approach demonstrates significant improvements, particularly for

pixels, where our algorithm surpasses MMDetection by 11% and SAM by 9%.
SAM and MMDetection are two pixel-centric algorithms that process images as
input and produce segmentation in the form of pixel masks. This underscores our
algorithm’s superiority over computer vision-based approaches in the pixel-level
segmentation.

The limitations of computer vision-based approaches become apparent when
processing web pages with complex backgrounds or pop-up advertisements. The
multi-layered nature of web content results in information loss when converted
into 2D images, affecting segmentation accuracy. For instance, if a web page
contains images, vision-based approaches segment these images, which is wrong
because each image is itself a web element and must not be segmented. To address
this, we implemented a post-processing step to align segmentation masks with
the nearest DOM nodes, thereby discarding segments not represented by any
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DOM node. Without this matching step, the pixel F ∗
B3 score significantly drops

to just 37% for SAM.
In the character-level segmentation, SAM achieves relatively high precision,

but its recall is rather low. A close examination of the dataset revealed that in
web instances dominated by text elements, SAM tends to struggle, often seg-
menting headers and titles and ignoring body text due to the lack of significant
differentiation. In contrast, our method effectively segments these elements by
grouping them based on tag names.

Despite performing relatively well on character and node elements, VIPS ex-
poses its shortcomings in the pixels category. This disadvantage can be explained
by the fact that VIPS tends to leave unnecessary background regions in their
segmentation.

pixels edges-fine edges-coarse chars nodes
Atomic element

0.0

0.2

0.4

0.6

0.8

1.0

Fb
3

Baseline
Corm.
HEPS
Meier
MMD.
VIPS
SAM
Ours

Fig. 6: The FB3 score distribution for 1,969 data instances in the Webis-WebSeg-
20 dataset [17]. Each box in the representation displays the median with a central
mark, while the lower and upper edges of the box represent the 25th and 75th
percentiles, respectively. The outliers are represented individually using the sym-
bol ♦ on the plot.

Figure 6 illustrates the FB3 distribution of our algorithm and the other seven.
The FB3 median value obtained by our algorithm is higher than those by all
other algorithms in every atomic type except for ’nodes.’ Additionally, our upper
quartiles for all five atomic levels reach the highest above all, showing that our
algorithm generally produces higher accuracy.

Kiesel et al. [18] have pointed out a gap in previous works is the low FB3 score
on the pixels atomic level, where our algorithm makes a significant improvement
and remains a competitive FB3 and F ∗

B3 in other categories. The accompanying
figure illustrates the remarkable proximity of our segmentation results to the
human-annotated ground truth.

Furthermore, we conduct a statistical analysis to assess the improvement
of our approach on WPS over alternative methods in terms of the FB3 met-
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Table 2: P-values obtained from one-sided Wilcoxon signed-rank tests comparing
our method with other methods on the metric FB3 . The bold values indicate the
statistically significant difference between our method and the compared one.

Ours vs. Baseline VIPS HEPS Corm. MMD. Meier SAM
Pixels 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Chars 0.0 0.998 0.0 0.0 0.0 0.0 0.0
Nodes 0.0 1.0 0.0 0.0 0.0 0.0 0.0

Edges-fine 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Edges-coarse 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ric. Combining results from 8 methods on 1,969 data instances, we utilize the
one-sided Wilcoxon Signed-rank test, selected for paired samples. Specifically,
for each atomic type, we compare the FB3 values of our method against each
comparator. With a predefined p-value threshold of 0.05, p-values below this
threshold signify rejection of the null hypothesis, indicating a statistically sig-
nificant difference in the distributions favoring our method over the compared
approach.

A shown in Table 2, across the pixel, edges-fine, and edges-coarse types, our
method exhibits significant improvements over all other methods, with p-values
< 0.05. Similarly, for ’chars’ and ’nodes’, our method demonstrates significant
enhancements compared to all methods except VIPS, with p-values of 0.998 and
1, respectively. The test also validates these findings by aligning with the average
FB3 results, indicating that our method achieves the highest FB3 results on pixel,
edges-fine, and edges-coarse, and obtains slightly lower FB3 scores for ’chars’ and
’nodes’ compared to VIPS.

Runtime complexity and scalability: Considering the runtime, our ap-
proach requires 1,240 seconds to segment all 1,969 web pages in our dataset, av-
eraging approximately 0.63 seconds per page. In contrast, the SAM takes about
9.4 seconds per page on average, making it 15 times slower than our approach.
The most time-consuming component of our approach is Algorithm 1, which
involves constructing a matrix of tree edit distances. The runtime of this algo-
rithm depends on the number of nodes in each web page. The largest web page
in our dataset contains 5,100 nodes and requires nearly 60 seconds to process.
However, for 88% of our dataset, this task takes less than 0.5 seconds.

4.5 Discussion

To have a deeper insight, we conducted an investigation into cases where we
achieved the highest and lowest FB3 scores. Our goal was to gain a better un-
derstanding of the factors influencing the performance of our algorithm.

For the cases in which our algorithm was poorly performed, we see a common
issue that the web page of these cases does not have a major dissimilarity in
structure, such as the case that the whole page is full of a single tag name. As



16 Huynh et al.

the main idea of our algorithm is to group similarly structured elements, our
algorithm will consider the whole page as a single segment.

Conversely, our algorithm demonstrated remarkable performance in cases
where web pages demonstrated easily distinguishable structures, with clear divi-
sions for different functional areas such as the menu, navigation bar, content area,
and footer. In these instances, the algorithm effectively identified and grouped
elements based on their distinct structural patterns, enabling accurate segmen-
tation and analysis.

In our approach, we specifically address the challenge posed by human-crafted
parameters. We achieve this by incorporating an outlying block elimination step
that is designed to be flexible and adaptive to the characteristics of each in-
dividual website. Moreover, our method takes the DOM tree as an input and
returns the list of DOM nodes representing the segments; we thus are robust to
the change of the relative position of elements as well as variations in element
separators.

5 Qualitative Evaluation

In addition to the quantitative evaluation, we also conduct a qualitative evalua-
tion for a more comprehensive understanding of the performance and effective-
ness of our segmentation approach.

5.1 Procedure

For our qualitative assessment, we have selected three highly competitive ap-
proaches—SAM, VIPS, and MMDetection—to compare against our method.
These algorithms exemplify the strengths of their respective methodologies. For
instance, VIPS utilizes the DOM as input and achieves the highest average FB3

scores for both ’nodes’ and ’chars.’ In contrast, SAM and MMDetection are
purely computer vision-based approaches, securing the second and third-best
results for the pixel atomic type, which underscores their effectiveness in visual
segmentation.

We randomly selected a subset of 500 web pages from our dataset, which
originally consists of 1,969 data instances, to conduct our evaluation. The seg-
mentation results for each page are then be ranked by three evaluators. To
ensure an unbiased evaluation, evaluators were blinded to the identities of the
segmentation methods.

Each evaluator was tasked with ranking the segmentation results of the four
methods for each web page in order of preference. It was ensured that no two re-
sults were assigned the same rank, with 1 denoting the most favorable result and
4 the least. These evaluations were conducted autonomously and independently
of one another.
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5.2 Criteria

Evaluators follow a set of criteria during their evaluation, which involves com-
pactness, distinctness, and coverage.

– Coverage: Segments should cover all visible elements on the web page
without omission. This criterion evaluates the completeness of segmentation
across the entire web page.

– Compactness: This refers to the degree to which semantically equivalent
elements are grouped together within the same segment. Higher compactness
indicates better grouping of related elements.

– Distinctness: This criterion assesses how well the segmentation method dis-
tinguishes between functionally different elements, ensuring they are placed
in separate segments. A higher score indicates clearer separation of distinct
elements.

5.3 Results

Table 3: Qualitative assessment results
1 2 3 4 W

VIPS 105/3 204/11 110/7 81/6 2.33/0.05
MMD. 48/7 109/3 176/3 167/8 2.92/0.05
SAM 50/5 105/7 162/12 182/1 2.95/0.03
Ours 296/9 82/2 52/7 70/2 1.79/0.04

Table 3 shows the results obtained from the qualitative assessment of four
methods, VIPS, SAM, MMDetection, and ours. The second to forth column rep-
resents the results for the ranking from 1 (most favorable) to 4 (least favorable),
respectively. The results are shown in the format of M/σ, where M denotes the
average number of web pages receiving the respective ranking and σ the stan-
dard deviation. The last column W shows the weighted average, W =

∑n
i=1 wixi∑n
i=1 wi

,
and its respective standard deviation.

Our method received 296 out of 500, on average, segmented pages being
ranked the most favorable (1), much higher than the other methods. This result
also means that most pages ranked 1, many more than those being ranked 2, 3,
and 4. The second best approach is VIPS, which received 105 and 204 segmented
pages being ranked 1 and 2, respectively.

These results reveal a clear trend across all evaluators, demonstrating a strong
preference for our segmentation method over VIPS, SAM, and MMDetection.
Our approach consistently outperformed the other methods, as indicated by its
notably lower weighted average rank of 1.79.

This result suggests better adherence to the evaluation criteria, particularly
in terms of distinctness, compactness, and coverage. Notably, our method se-
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cured the top ranking from all evaluators in nearly 60% of the dataset instances,
highlighting its overall effectiveness.

Furthermore, the average rankings among evaluators closely align with the
quantitative evaluation metrics. Specifically, our method achieved the highest
FB3 score, surpassing the other three methods.

While VIPS remained the best for node and character segmentation in the
quantitative evaluation, it ranked second overall, following our method. Despite
SAM improving by 10% in pixel segmentation over VIPS and marginally outper-
forming MMDetection, it was the least favored by evaluators. A closer inspection
of SAM’s segmentation results across different web pages reveals a consistent
trend: the algorithm tends to segment by color boundaries, which works well in
cases where menus or footers have distinct colors. However, when dealing with
pages that are primarily text-based, SAM tends to segment some text by size
and group all other content into a single segment, making it less preferred by
evaluators. The other computer vision-based approach, MMDetection, ranking
just 0.03 below SAM, suffers from similar issues.

Finally, the standard deviations of the weighted ranks are all below 0.05,
indicating a high level of agreement among evaluators.

6 Related Work

6.1 WPS Approaches

There have been many approaches proposed for web page segmentation over
the past two decades. The Gestalt principles of perception are used to group
neighboring nodes under the same parent if their similarity measure exceeds 0.7,
determined by their edit distance [31]. BoM [27] consists of three phases: build-
ing a content structure from the DOM tree, mapping it to a logical structure
based on a granularity parameter, and structuring it into a single representa-
tion that represents the segmented web page. VIPS [7] extracts a hierarchical
semantic structure by combining the DOM structure with visual cues through
block extraction, separator detection, and content structure construction. In ad-
dition, the HEPS method [22], mentioned in the Webis-WebSeg-20 dataset [17]
for comparison, utilizes text nodes and images to identify potential headings, cor-
responding blocks, and create a hierarchical segmentation. The DOM structure
is also a vital component in other segmentation models [15, 16], where additional
factors like textual and visual cues are integrated to enhance performance.

A purely text-based approach, the Block Fusion (BF) algorithm [20], focuses
on comparing the text density of adjacent blocks to determine whether they
should be combined.

There are also approaches that treat a web page as an image and use com-
puter vision techniques for segmentation. One such approach recursively splits
segments into two by selecting the vertical and horizontal lines with the clearest
edge pixels (detected through edge detection) from the entire page [13]. Another
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approach in this research direction fine-tuned the hybrid task cascade model
from MMDetection for web page segmentation [11].

6.2 Applications of WPS

WPS has been widely applied in various research. Segmentation on the web can
help to determine informative and non-informative sections within a web page
and can distinguish between various types of information. This distinction is
valuable for tasks like web ranking and data mining on the web [10].

WPS is also used to automatically adjust the user interface (UI) to accom-
modate various devices, by reorganizing or redecorating web pages accordingly
[2].

WPS has been employed in Fraggen [33] for web testing, enhancing state
exploration, and test oracle generation. By dividing pages into fine-grained frag-
ments, Fraggen detects 123% more near-duplicates, infers crawl models with 62%
higher precision and 70% more recall, and produces robust regression test suites
with near-perfect success rates.

Web UI testing has also benefited from the use of WPS. In [14], WPS was
successfully applied to test case prioritization. Rather than attempting to cover
all possible web elements, the approach focused on exploring as many segments
of the web page as possible. This method demonstrated a 20% reduction in the
average time required to detect an error.

7 Conclusion

This paper proposes a novel method for web page segmentation using DOM-
structural analysis. Our method overcame the limitations of parameter-dependent
and rule-based methods by employing flexible techniques that adapt to the char-
acteristics of each website being analyzed. The proposed method involves gener-
ating blocks, analyzing their cohesion, and applying the Canny algorithm for a
more user-friendly layout. We perform a thorough evaluation of our technique,
encompassing both quantitative and qualitative analyses. In the quantitative as-
pect, we assess our method using a dataset consisting of 1,969 web pages sourced
from the Webis-WebSeg-20 dataset [17]. Our findings exhibit significant efficacy,
as our approach achieves a 64% FB3 score, outperforming VIPS and MMDetec-
tion by 19% and 10% respectively, on the same dataset. In terms of qualitative
assessment, our method surpasses the two comparative methods, consistently
earning the highest ratings across evaluations conducted by five independent
evaluators.

Future research will focus on improving our segmentation method to bet-
ter analyze various type of applications. Better segmentation outcomes can be
obtained by combining additional variables to provide multimodal cues, such as
visual or textual features. Additionally, incorporating computer vision techniques
can facilitate our method and produce a model that is more reliable.
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