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Abstract

In API testing, deriving logical constraints on API response bodies

is crucial in generating the test cases to cover various aspects of

RESTful APIs. However, existing approaches are limited to dynamic

analysis in which constraints are extracted from the execution of

APIs as part of the system under test. The key limitation of such a

dynamic approach is its under-estimation in which inputs in API

executions are not sufficiently diverse to uncover actual constraints

on API response bodies. In this paper, we propose to combine a

novel static analysis approach (in which the constraints for API re-

sponse bodies are mined from API specifications), with the dynamic

approach (which relies on API execution data). We leverage large

language models (LLMs) to comprehend the API specifications,

mine constraints for response bodies, and generate test cases. To re-

duce LLMs’ hallucination, we apply an Observation-Confirmation

(OC) schemewhich uses initial prompts to contextualize constraints.

Our empirical results show that LLMs with OC prompting achieve

high precision in constraint miningwith the average of 91.2%.When

combining static and dynamic analysis, our tool, RBCTest, achieves

a precision of 78.5%. RBCTest detects 107 constraints that the dy-

namic approach misses and 46 more precise constraints. We also use

its generated test cases to detect 21 mismatches between the API

specification and actual response data for 8 real-world APIs. Four

of the mismatches were, in fact, reported in developers’ forums.

1 Introduction

By adhering to the principles of Representational State Transfer

(REST), the RESTful APIs provide a standardized way for interop-

erability among components and software systems. RESTful API

testing helps identify and resolve several issues, ensuring that APIs

perform as expected [8, 10, 14, 24, 27, 33]. It also helps verify that

APIs adhere to specifications and handle edge cases gracefully.

Among techniques for API testing, black-box testing uses the Ope-

nAPI Specification (OAS) as a basis to generate test cases and data

[18, 22, 27]. The state-of-the-art API testing approaches are fo-

cused on status code [5, 6, 22, 33] and schema validation [5, 6, 33],

even with rule extraction using human-readable descriptions in the

OAS [19]. In status code validation, each HTTP request returns a

response with a status code, a three-digit integer, indicating the

outcome of the HTTP request. Current testing approaches define

an oracle for a test case by validating whether the response status

code matches the expected value. In contrast, schema validation
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ensures the correctness of the response data by checking it against

a specified schema. This involves verifying the presence of all re-

quired properties and ensuring the data types of these properties

match their schema in the specification.

While status code and schema validation effectively cover aspects

of data representation and status checking, they may overlook the

logical correctness and validity of the response data from the APIs,

which is essential for software reliability. For example, an API

request for a customer older than 18 receiving a response for one

younger than 18 would not be detected by just validating the status

code or schema. Deriving logical constraints on API response bodies

is essential for generating test cases to cover RESTful APIs.

The state-of-the-art approaches for mining constraints on API

response bodies focus only on dynamic analysis in which the con-

straints are extracted from the execution data of the system under

test (SUT). AGORA [9] automatically detects invariants—properties

that should consistently hold true. To identify invariants, which serve

as logical constraints onAPI response bodies, it extends Daikon [16],

a dynamic instrumenter used to detect invariants during execution.

As with dynamic analysis, it under-estimates the constraints due to

the lack of diverse inputs to cover different aspects of API response

bodies. For example, the inputs of the APIs might not be diverse

enough to discover that the minimum age for an operation on a

website is 18. Another limitation is that it requires the SUT operate

accurately to extract the constraints from inputs and outputs.

We propose RBCTest, a combined approach between a novel

LLM-based static approach to mine the constraints of API response

bodies from the API specification, and the dynamic approach as

in AGORA [9]. Both approaches complement to each other in the

following ways. First, constraint mining remains feasible even if

only the API specification or execution data is available. For in-

stance, when an API specification exists but the APIs and the sys-

tem utilizing them are still under testing and development and may

not function correctly. Conversely, in a regression testing scenario

without up-to-date specification, the SUT with APIs from previous

versions has been functioning, while the current version is still un-

der development. In such cases, execution data from the previous

version can be used to extract constraints to generate test cases for

regression testing. Second, the specification often provides API de-

tails, including request bodies sent to the API and response bodies

returned for each operation. This enables mining constraints on the

API’s response bodies to uncover more comprehensive information

about these constraints, which are overlooked by the dynamic ap-

proach. In contrast, due to actual execution, the runtime data helps

derive more detailed constraints not defined in the specifications.
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To mine constraints, we leverage the ability of large language

models (LLMs) to comprehend natural language descriptions in API

specifications. Constraints on API response bodies are inferred from

different sources, including response properties, response schema,

operations, and request parameters. We also harness LLMs’ profi-

ciency to create test cases from the mined constraints to verify if the

SUT correctly returns the content satisfying the mined constraints.

Moreover, we apply an Observation-Confirmation scheme. We di-

vide the task of mining constraints into two phases: observation

and confirmation. The initial prompt contextualizes the description

of constraints, enabling the next prompt to more accurately decide

their presence. As another issue in LLMs’ exploration capability,

they could produce resulting constraints that are not true. Thus,

we enhance RBCTest with two extra mechanisms. First, before

requesting the LLM to make observations concerning constraints

on parameters, we perform a filtering process to keep only the valid

ones. Second, after generating test cases for mined constraints, we

add a semantic verifier to verify those test cases against the exam-

ples specified in the OAS file. The idea is that such examples tend to

be correct because they illustrate the descriptions on the data types

or the data. For example, the OAS could give "March" as a valid

month. If such a correct example does not pass a test case generated

by RBCTest based on the mined constraint(s), the test case must

be incorrect, which is caused by incorrect constraint(s). Thus, our

verifier will discard them, leading to an improved precision.

We evaluated RBCTest on two datasets, one from the baseline

[9] (AGORA dataset) with 11 operations in 7 API services and our

RBCTest dataset collected from 8 real-world API services consisting

of 59 endpoints and 83 operations [7]. Our empirical results show

that GPT-4-turbo and our OC prompting achieves high precision in

constraint mining with the average of 91.2%. RBCTest achieves a

precision of 78.5%, and detects 107 constraints that the dynamic

approach misses and 46 more precise constraints. We also

leverage its generated tests to detect the mismatches between the

API specifications and actual execution of the SUTs. A detected

mismatch indicates a fault in the SUT or that the specification does

not reflect the SUT. We report 21 actual faults found in 8 real-world

applications, including 4 issues reported by users on GitLab Forum

[1–4]. In brief, this paper makes the following contributions:

1. RBCTest: [A combination of static and dynamic ap-

proaches] for constraint mining and test generation for API re-

sponse bodies by using API specifications.

2. [A manually-verified benchmark] for API response bodies

is available [7] for future research on API testing approaches.

3. [An extensive evaluation] showing RBCTest outperform-

ing the state-of-the-art baselines.

2 Motivating Example

2.1 Example and Observations

To illustrate the challenges and motivate our approach, we use

Stripe, an online payment service, streamlining the process of charg-

ing customers via APIs. Figure 1(b) shows a simplified description

from the API specification (OAS), detailing the GET operation for

retrieving past charges. This API enables users to retrieve charging

records within a specific time interval (lines 11-12). The time inter-

val is defined by the gt (greater than) and lt (less than) parameters,

1 (a) charge:

2 description : The 'charge ' object represents an attempt to move

money into your account.

3 properties :

4 amount:

5 description : A positive integer can be up to eight digits .

6 type : integer

7 example: 99999999

8 created :

9 description : Time at which the object was created . Measured

in seconds since the Unix epoch.

10 type : integer

11 currency:

12 description : Three lowercase letters .

13 type : string

14 example: usd

15 customer:

16 description : ID of the customer this charge is for if existed .

17 type : string ...

1 (b)paths :

2 /v1/charges :

3 get :

4 description : Returns a list of charges you have created . The

charges are returned in sorted order ...

5 parameters:

6 name: created

7 description : Only return charges that were created during the

given date interval .

8 schema:

9 anyOf:

10 − properties :

11 gt ( integer )

12 lt ( integer )

13 name: customer

14 description : Only return charges for the customer specified by

this customer ID.

15 schema:

16 type : string ...

Figure 1: (a) Schema of a response for ‘charge’ API in the

project Stripe described in a OAS file and (b) a simplified

description for the GET charges API operation from Stripe.

1 {
2 "id": "ch...15",
3 "object": "charge",
4 "customer": "cus_id",
5 "amount": 1099,
6 "created": 1679090539,
7 "currency": "usd",...
8 }

Figure 2: A response’s body from a GET request for Stripe.

representing the lower and upper bounds of the time range, respec-

tively. Users can also specify the customer for whom they wish to

retrieve charging history (lines 13-16). A successful request returns

a response with a status code of 200 and a response body with

data. The structure of the response data is outlined in the schema in

Figure 1(a), which consists of a list of charge objects, each associ-

ated with various properties, e.g., amount, created timestamp, cur-

rency, and others. For instance, a GET request to the /v1/charges end-

point with parameters like ‘created[gt]=1679090500&customer=cus_idA’

returns a list of charges that satisfy the given conditions. An ex-

ample response object is displayed in Figure 2. The content of the

response is constrained by the actual input parameters in the re-

quest. Thus, a complete testing process needs to verify the response

content in addition to the returned status code. For example, a test

case can check if the created field of each returned charge object

falls within the specified interval and ensuring that the customer

field matches the requested ID.
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Observation 1 (Constraints from input parameters). The

response data is constrained by the input parameters from the request.

When testing, in addition to verifying the status code, testers need to

verify the response data.

In Figure 1(a), the descriptions on the properties of the returned

charge objects define certain constraints on the attributes of those

objects. For example, the amount property must be a positive integer,

with a maximum value of eight digits. The currency attribute has a

three-letter lowercase code (e.g., usd).

Observation 2 (Constraintswithin response body). Natural

language descriptions on operations express logical constraints on

operations, their responses and others, formatting requirements, or

value range limitations that must be validated during API testing.

The OAS file often includes examples that illustrate specific

constraints on data or data types. For instance, in Figure 1(a), the

file provides an example of $999,999.99 as a positive number for

the property amount. A mined constraint that does not match its

corresponding examplemay be incorrect. To validate that, we utilize

the generated test case for the constraint.

Observation 3 (Verificationwith examples). The illustrating

examples in the description can be used to verify against the generated

test cases, i.e., the validity of the mined constraints.

2.2 State-of-the-art Approaches

In API test case generation, validation typically falls into two main

categories: status code validation and schema validation.

Status Code Validation: Each HTTP request is returned with

a response containing a status code and data. The status code, a

3-digit integer, indicates the outcome of the HTTP request. 2xx
codes signify a successful request. Conversely, 4xx codes indicate
errors, such as a bad syntax request or invalid input values. For

instance, in testing the API ’GET/user_information’with various valid

and invalid user IDs, testers would expect the API to return status

codes 200 or 404 based on the inputs provided. This validation

method is widely used in automation testing tools, e.g., Postman [6]

and Katalon [5], RestTestGen [33], or KAT [22].

Schema Validation: Schema validation ensures the response

correctness by checking it against a predefined response schema.

This verifies the presence of all required properties and the con-

sistency of property data types with their specifications. A lack of

required data or a mismatch in data types indicates errors in API

services. Tools, e.g., RestTestGen [33], leverage external libraries,

such as ‘swagger-schema-validator’, to facilitate schema validation.

While status code and schema validation effectively cover aspects

of data representation and status checking, they may overlook the

logical correctness and validity in the response data. For instance, if

an API request for a charge in 2025 returns one from 2024, or if the

charge amount is negative, these issues would not be detected by

merely validating the status code or schema.

To address that, the state-of-the-art dynamic approach, AGORA [9]

extends Daikon [16], a dynamic instrumenter, to infer the invariants

from the values extracted from the execution of the SUT using the

APIs. AGORA considers these derived invariants as the constraints

for the response bodies. However, inherent from the nature of a

dynamic approach, the quality of the derived invariants depends

on the values observed during the execution, which might not be

diverse enough to reveal the correct constraints. For example, for

all the inputs, the charge values might never reach 99,999,999, thus,

Daikon returns the maximum charge that is less than that value.

2.3 Key Ideas

From the above observations, we draw the following key ideas

to design RBCTest, an approach for mining the constraints of

response bodies and then generating test cases to validate them.

Key Idea 1 [Combining Static and Dynamic Approaches to
Mine Constraints of API’s response bodies]. The first component

of RBCTest is a novel LLM-based static approach to mine the con-

straints for API’s response bodies from the OpenAPI Specification

(OAS). The constraints on the response data can be found in the

specification in either the descriptions of the operations (e.g., line 5

of Figure 1(a)) or the descriptions of the schema for the response data

(lines 2–24 in Figure 1(b)). For example, the description in Figure 1

states that ‘the charges are returned in a sorted order with the most

recent ones appearing first’. The schema for the returned values

in Figure 1 also provides us several constraints on the parameters

(lines 5–6) as well as the description of the returned object as a

whole (line 2). For example, the amount of a charge is a positive

number with up to 8 digits and such value must be of integer.

We integrate AGORA as the dynamic component, leveraging

execution data from the SUT to mine invariants for API response

bodies. The static and dynamic components complement each other.

First, constraint mining remains feasible even if only the API speci-

fication or execution data is available. Second, the static component

facilitates mining constraints on API response bodies from API

specifications, capturing broader constraint information that the

dynamic approach might miss. Conversely, runtime data, derived

from actual executions, can help refine constraints, providing more

precise insights than those typically found in API specifications.

Key Idea 2 [Observation-Confirmation scheme on LLMs for
constraints discovery and test generation]. For the task of ex-

tracting constraints from API specifications, we utilize the ability

of LLMs to comprehend natural language descriptions found in API

specifications for constraint mining on the APIs and their parame-

ters. Our experiment showed that direct use of LLMs for constraint

mining yields sub-optimal performance. To improve it, we apply

an Observation-Confirmation scheme in which the initial result

returned from the LLMs will be fed back to themselves in a confir-

mation prompt to provide better contexts on the constraints.

Key Idea 3 [Generating test cases for the constraints on re-
sponse bodies]. Our goal is to advance beyond current API testing

techniques: we also generate test cases to evaluate the mined con-

straints. For instance, a test case is generated to verify that the list

of charges returned by the API endpoint ‘v1/charges’ is sorted in

reverse chronological order. Another example includes generating a

test case to validate the format/value of the returned charge amount.

Key Idea 4 [Filter and Semantic Verifier]. Before asking the
LLM to analyze constraints on parameters, we first perform a fil-

tering process to remove invalid constraints. After generating test

cases based on the mined constraints, we then introduce a semantic

verifier to check these test cases against the examples in the OAS.

The rationale is that these examples are typically accurate, as they

3
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Figure 3: Static Constraint Mining with LLMs

represent the valid data types or values. For instance, an example

of $999,999.99 is used to illustrate a positive number for amount. We

can validate the generated test cases against such examples. If a

test case fails to validate a given correct example, it suggests that

the mined constraint may be incorrect.

3 Static Constraint Mining

To mine the constraints, we observe that the specification for an

API endpoint includes two main parts: the request specification (the

input of the API) and response schema specification (the output of

the API). (1) A request specification determines how to call an API

endpoint, detailing the required input parameters, their roles, and

the parameters within the request body along with their respective

roles. It might also contain the description of the API operations.

(2) The response schema specification provides instructions on the

response data, including each property in the response data, its

description, datatype, nullability, and other relevant details. These

parts contain descriptions that are the targets for constraint mining.

3.1 Constraints from Request Specifications

An essential component of an API specification is the request spec-

ification. This part instructs clients on how to correctly initiate

API calls, detailing the required inputs and the returned data. Our

constraint mining relies on natural language descriptions attached

to request parameters or response properties. Since descriptions are

optional in OAS, they may appear in one endpoint but not others.

To extract them, we first check the current response schema; if none

are found, we search the entire OAS document. Unlike KAT [22],

which uses LLM-based "description mapping," we avoid potential

inaccuracies that could propagate errors. Instead, we adopt descrip-

tions from properties with the same name in other schemas. If none

exist, we exclude the property, prioritizing precision over recall.

3.1.1 Request-Response Constraint Mapping. The idea is that to

determine a constraint from request parameters, the response data

must contain a property that reflects this constraint. Thus, we iden-

tify pairs consisting of a request parameter that includes a constraint

and a response data property that reflects this constraint (Figure 4).

1 PARAMETER_SCHEMA_MAPPING_PROMPT = '''Given a request
parameter and an API response schema, check if there is
a matching property in the API response schema.

2 Request parameter for {method} - {endpoint}:
3 {parameter}: {description}
4

5 Follow these steps to find the matching property: {
Instructions for chain-of-thought steps}

6

7 Schema specification {schema}: {schema_observation}
8 Confirm if the request parameter has a matching property in

the response schema: ...
9 Identify the corresponding property name of the provided

request parameter in the schema. ...
10 If a matching property exists, explain it using this format:

...'''

Figure 4: Request-Response Parameter Mapping Observation

For instance, to verify a "customerID" constraint from Observation

1, the response data should contain a property that identifies the

customer. Thus, the required pair is <"customerID", "customer">. If

the response data does not have a field to represent a constraint,

that constraint is disregarded as it cannot be validated.

1 MAPPING_CONFIRMATION = '''{System prompt}
2 The request parameter's information:
3 - Operation: {method}
4 - Parameter: {parameter_name}
5 - Description: {description}
6 The corresponding property's information:
7 - Resource: {schema}
8 - Corresponding property: {corresponding_property}
9 {Instructions for chain-of-thought steps}
10 Answer format: ...'''

Figure 5: Request-Response Constraint Confirmation

3.1.2 Detailed Process. The process of extracting constraints from

request parameters encompasses four steps: (1) description extrac-

tion, (2) observation ( 1 - 3 from Figure 3), (3) Request-Response

constraint mapping ( 4 ), and (4) constraint confirmation ( 5 ).

Initially, the description extraction phase follows the process

in Algorithm 1. An API request comprises multiple parameters

and a response data schema. First, a prompt is made to gather

observations on the response schema and operations associated

4
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Algorithm 1 Extract Constraints from Request Parameters

Input: API_spec(dict): obj of entire API specification.

req_spec(dict): specification obj of a certain request.

resp_schema(dict): schema obj of the associated response.

Output: list of request-response constraint properties

1: function getConstrFromReqParas(API_spec, req_spec, resp_schema)

2: reqRespConstraints← []

3: respSchemaObser← LLM().respSchemaObser(resp_schema)

4: operationObservation← LLM().operationObser(desc)

5: for each param in req_spec do

6: desc← req_spec[param]["desc"]

7: if req_spec[param]["desc"] = NULL then

8: desc← findExactMatchParameter(API_spec, param)

9: if desc = NULL then

10: continue # Skip this param

11: # Use LLM to find constraint for this param

12: paramObser← LLM().parameterObser(param, desc)

13: answer, corrProp, explain← LLM().reqRespMapping

(param, desc, paramObser, respSchemaObser)

14: if answer = TRUE then

15: confirmation← LLM().confirmReqRespMapping

(param, corrProp, explain)

16: if confirmation = TRUE then

17: reqRespConstraints.append((param, corrProp))

18: return reqRespConstraints

19: end function

with this request (lines 3–4, Algorithm 1). For a request parameter,

we engage the LLM to provide its observations on that parameter

by presenting it alongside its description (line 12, Algorithm 1). The

LLM is expected to provide a description of a constraint within this

parameter description. If the description is missing, the specification

is searched for another parameter with an identical name.

These descriptions support the next step: Request-Response pa-

rameter mapping (Block 4 , line 13). We guide the LLM through a

two-step reasoning process using a tailored prompt (Figure 4). The

LLM receives a brief description of the request parameter, including

its details and observations ( 2 ), ensuring a clear understanding of

its intent and constraints. Second, we present the response schema,

observations from Block 3 , and ask the LLM to identify a match-

ing property. A match occurs when the request parameter filters

response data or both share the same value meaning.

From this two-step reasoning, we require the LLM to answer

three questions: (1) Is there a matching property in the response

schema? (2) What is this property? (3) How does the request pa-

rameter influence this property?

If the answer to (1) is false, indicating that no property reflects

this request parameter, we disregard this parameter. Otherwise, we

proceed to the final prompt (Figure 5), which is the confirmation

of the mapping (lines 14–17, Block 5 ). In this prompt, we present

the pair of the request parameter and the matched property from

Block 4 and ask the LLM to confirm the accuracy of this mapping

(line 15). This step aims to minimize the occurrence of false pos-

itives. Finally, the validated pairs of the request parameters and

the response properties are stored as Request-Response constraints

(lines 16–17).

Algorithm 2 Extract Constraints from Response Specifications

Input: API_spec(dict): obj of entire API specification.

response_schema(dict): schema obj of a certain response.

knowledge_base(dict): gained knowledge.

Output: list of constraint properties.

1: function getConstraintInsideResponseSchema(API_spec, re-

sponse_schema, knowledge_base)

2: constraint_properties← []

3: for each prop in response_schema do

4: desc← response_schema[prop]["description"]

5: if desc = NULL then

6: desc← exactMatchProp(API_spec, prop)

7: if desc = NULL then

8: continue # Skip this property

9: if prop in knowledge_base then

10: if knowledge_base[prop] = TRUE then

11: constraint_properties.append(prop)

12: else

13: datatype← response_schema[prop]["datatype"]

14: prop_obser← LLM().propertyObser(prop, datatype, desc)

15: constraint_confirmation ← LLM().constraint_confirmation

(prop, datatype, desc, prop_obser)

16: if constraint_confirmation = TRUE then

17: constraint_properties.append(prop)

18: # Add this property to knowledge base

19: knowledge_base[prop]← constraint_confirmation

20: return constraint_properties

21: end function

3.2 Constraints from Response Specifications

We examine descriptions within the response schema specifica-

tion, as they provide direct constraints by mapping each property.

Each endpoint includes a response schema that guides clients on

parsing returned data, structuring the response object with proper-

ties and descriptions (Figure 2). Our constraint-mining algorithm,

leveraging LLM, is outlined in Algorithm 2. It first extracts de-

scriptions for each property (lines 4-8) following Section 3.1. If a

description exists, we check a knowledge base of LLM-identified

constraints to avoid redundant queries. If found, we reuse the stored

information; otherwise, we prompt LLM to extract constraints.

Observation-Confirmation Strategy. This process involves

two phases: observation (line 14) and confirmation (line 15). Our

experiments reveal that when descriptions lack detail for constraint

extraction, LLM may resort to fabricating details, a phenomenon

known as hallucination. Drawing inspiration from the Chain-of-

thought [34], we divide the task of extracting constraints into two

phases of observation and confirmation, the initial prompt better

contextualizes the description of constraints, enabling the subse-

quent prompt to more accurately determine a constraint.

In the observation phase (Block 6 ), LLM is prompted to identify

constraints from the description. For example, given a property date

(type: string) described as “ISO date: the literal date of the holiday”,

LLMmight infer: "The date must follow the YYYY-MM-DD format for

validity, ensuring consistency within the API.” This adds specificity

not explicitly mentioned in the description.

Next, the observation is fed into the Constraint Confirmation

Prompt (Block 7 ), where the LLM validates whether the extracted

constraint provides enough detail for script generation. This step,

5



Submitted to a conference, Mar 15, 2025, XXX, XXX Hieu Huynh, Tri Le, Vu Nguyen, and Tien N. Nguyen

Figure 6: Example outputs from RBCTest and AGORA.

ID Constraints Invariants

1

the number of returned items

has to be less than or equal

to the requested limit

input.limit >= size(return.items[])

2 – return.total >= size(return.items[])

3 return.total is an integer larger

than or equal to 1

return.total >= 1

4 return.total is Integer

5 – input.market is a substring of return.href

6

number of adult

guests (1-9) per room
return.adults is Integer

7

return.price must be

within input.price_range
–

8 An amount is a positive integer –

can be up to eight digits –

similar to Figure 5, ensures that constraints specify values, ranges,

or formats. If confirmed, the constraint is marked as a Response

Property constraint and stored in the knowledge base.

4 Combining Constraints and Invariants

Constraints detected by our static method are based on OAS while

invariants determined by AGORA come from execution data. We

present an ensemble approach to combine constraints and invari-

ants. Figure 6 shows sample outputs produced by each method.

Several constraints can only be identified using OAS. For instance,

Constraint 8 in Figure 6, which specifies that the charge amount

must be smaller than 99,999,999, can only be extracted from the

OAS. This is because AGORA requires a sufficiently large num-

ber of API executions to infer such constraints. Conversely, some

constraints can only be inferred at run-time, e.g., those related to

returned Hrefs—URLs containing requested information.

In AGORA, each detected invariant is associated with a set of

variables, as depicted in Figure 6, and a given set of variables may

be linked to one or more invariants (e.g. Invariants 3-4). In our

static method, each constraint is tied to a specific set of variables,

which aligns with how AGORA groups invariants. Because each

constraint is modeled via textual representations, we leverage an

LLM and its natural-language text understanding to derive the

relevant variables in the constraint.

If a constraint and an invariant involve different sets of variables,

we include both in the resulting constraints for RBCTest, as they

are uniquely detected by each approach. If they involve the same,

we select the constraint or invariant with the stricter condition. For

instance, in Figure 6, row 6, we chose the constraint identified by

our static method, as it is stricter than the invariant detected by

AGORA. To determine which is stricter, we leverage an LLM, which

can interpret well the conditions expressed in natural language.

5 Constraint Test Generation

Constraint tests are generated using LLM (Figure 8) based on

two types of constraints: Request-Response constraints and Re-

sponse Property constraints. Request-Response constraints stem

from request parameter descriptions, while Response Property con-

straints are derived from the response schema. These tests take a

response body and request details as input, producing outcomes

of ‘matched,’ ‘mismatched,’ or ‘unknown.’ A ‘matched’ outcome

1 CONSTRAINT_TEST_GEN_PROMPT = '''
2 Generate a Python script to check if a property in a REST

API's response meets specified constraints and rules.
3 Constraint description:
4 - Constraint from request parameter: {parameter}
5 - Constraint description: {constraint_description}
6 API response schema: {response_schema_specification}
7 The property of the provided request parameter in API

response:
8 - "{property}": "{prop_description}"
9 Based on the provided constraint from request param, and the

respective attribute in the API response, generate a
Python script to verify the '{property}' property in
the response.

10 Rules: {Rules for test gen}
11 Format the script as shown: ...'''

Figure 7: Constraint Test Generation Prompts

Response
Body

matched/
mismatched/

unknown

Execute
Test CasesConstraints Test

Generation
Constraint test
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for
each

LLM

Constraint
Test Cases
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constraints
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Figure 8: Constraint Test Generation in RBCTest

confirms that the response satisfies the constraint, whereas ‘mis-

matched’ indicates a violation. An ‘unknown’ outcome suggests

the absence of the relevant property, possibly due to its optional

nature in the specification. We also incorporate a semantic verifier

that cross-checks test cases against examples in the OAS file. If a

test case fails to validate a given correct example, it suggests that

the mined constraint may be incorrect.

5.1 Request-Response Constraints Testing

The Request-Response Constraint Test identifies dependencies be-

tween a constrained request parameter and its corresponding re-

sponse property. To generate a test case, we use the prompt in Fig-

ure 7, which requires four inputs: the parameter name, its constraint

description, the corresponding property name, and the response

schema. LLM generates a validation function with two inputs: the

response body and the request parameter. It then creates a script to

check conditions between them. For instance, when validating a

‘created’ time interval (Observation 1), LLM extracts the ‘created’

time from the response body and the conditional values from the

request parameter (‘created[gte]’, ‘created[lte]’) before performing

logical comparisons. To ensure robustness, we guide LLM with pre-

defined rules: using a try-catch block for error handling, excluding

examples, and following a standardized function template. These

rules ensure consistency and focus on constraint verification.

5.2 Response Property Constraints Testing

The Response Property constraint Test directly correlates the prop-

erty’s description with the property itself. To create a test case for

this constraint, we utilize a specific prompt (Figure 7). This prompt

requires three inputs: the property name, the constraint description,

and the response data schema. The description extracted from the

previous mining step gives the necessary information for gener-

ating constraint validation code, while the response data schema

defines the structure and type of the expected data. This schema

guides LLM in generating code to parse response data. We guide

6
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Table 1: Constraints Test Generation on AGORA dataset.

Static Dynamic Unique Overlapping

APIs Total TP P Total TP P Static Dynamic +S +D Eq.

A.Hotel 44 39 88.6 117 61 52.1 20 34 8 1 10

GitHub’ 16 13 81.3 198 194 98 3 175 6 0 4

GitHub” 7 7 100 150 127 84.7 7 121 0 0 0

Marvel 28 23 82.1 115 55 47.8 13 35 6 0 4

OMDB 4 4 100 16 15 93.8 3 13 0 0 1

OMDB’ 2 1 50 5 5 100 0 3 0 0 1

Spotify 21 21 100 41 41 100 11 26 3 2 5

Spotify’ 13 12 92.3 68 58 85.3 1 29 5 4 2

Spotify” 15 15 100 55 45 81.8 3 28 6 2 4

Yelp 2 1 50 30 12 40 1 11 0 0 0

YouTube 65 62 95.4 194 111 57.2 45 52 12 2 3

TOTAL 217 198 91.2 989 724 73.2 107 527 46 11 34

Static: LLM-based, Dynamic: Execution-based (AGORA), +S: Static con-

straint better, +D: Dynamic constraint better, Eq: Equivalent.

LLM to follow predefined rules (similar to 5.1) to maintain consis-

tency in the generated code in different constraints.

6 Empirical Evaluation

For evaluation, we conduct several experiments, seeking to answer

the following research questions:

RQ1. [Constraints Test GenerationAccuracy]Howwell does

RBCTest perform in comparisonwith individual static and dynamic

approaches in generating test cases from the mined constraints?

RQ2. [ConstraintsMiningAccuracy]Howwell does RBCTest

perform in detecting the onstraints for response bodies in the REST-

ful API specification?

RQ3. [Accuracy in Test Generation from the Correctly

Mined Constraints] How accurate is our approach in generating

test cases for mined constraints?

RQ4. [Usefulness in Response Body Testing] How accurate

is our approach in detecting mismatches between the specification

and its working APIs?

RQ5. [Ablation Study]Howwell do Confirmation-Observation

and Semantic Verifier contribute to RBCTest’s performance?

Data Collection. We curated a dataset from eight real-world ser-

vices, including GitLab and Stripe, comprising 59 endpoints and

83 operations. These services were selected for several reasons: (1)

They feature complex request-response structures across diverse

business domains. (2) They have been widely used in API testing

research, such as ‘Canada Holidays’ [22], GitLab-services [14, 18, 22,

23, 35, 36], and ‘Stripe’ [22, 28, 30]. (3) Their active status allows API

calls to collect real response data. (4) Their specifications vary in

documentation quality, enabling evaluation across different levels

of completeness. We selected API endpoints based on the presence

of parameter or response descriptions, excluding those without any

descriptions, as constraints could not be identified. Stripe, offering a

test mode with limited endpoints, contains deeply nested response

schemas, often missing values for validation. To mitigate this, we

included only Stripe endpoints without nested schemas, retaining 7

in total. We cover 3 REST methods: GET, PUT, and POST (Table 3).

7 Experimental Results

7.1 Constraints Test Generation Accuracy (RQ1)

7.1.1 Methodology. We ran our LLM-based static method to detect

constraints. We then manually evaluated each mined constraint.

We used two datasets: 1) the AGORA [9] dataset, and 2) a self-

collected dataset (will be explained later). For overlapping analysis,

we grouped the invariants from AGORA into the groups for one

specific variable, two variables, and so on. We then compared the

groups of invariants and constraints on the same set of variables.

As evaluation metrics, we report the number of detected con-

straints, the number of True Positives (TP), False Positives (FP), and

the precision 𝑃 , with P = TP

TP+FP . Specifically, for AGORA, we reuse
their experimental results (Total, TP, and P) on their dataset.

7.1.2 Results on the AGORA dataset. Table 1 shows the results

on the AGORA dataset with 11 API operations on 7 APIs. Our

LLM-based static method identified 217 constraints, with 198 true

positives, resulting in a precision of 91.2%. In contrast, AGORA

detected 724 true positives out of 989 invariants, resulting in a

precision of 73.2%. Notably, a variable has only one constraint,

while it can have multiple invariants from AGORA.

RBCTest combines the constraint results from both LLM-based

static method and the dynamic approach in AGORA. Thus, we

also conducted an overlapping analysis between them. Overlapping

constraints are those applied to the same variables, and we compare

how well the constraints are detected. A constraint is considered

as better than one invariant or a group of invariants if it refers

to a narrower set of values for the variable(s) while still adhering

to the variables’ description. Similar definition is used for a better

invariant or group of invariants. They are equivalent if they cover

exactly the same set of possible values for the variable(s).

Our overlapping analysis results reveal that 107 constraints were

uniquely detected by our LLM-based static method, while 527 were

exclusively identified by AGORA. We further investigated the invari-

ants detected only by AGORA and found that 319 of them pertained

to variables lacking descriptions in API specification. This suggests

that these invariants were only detectable through the API execu-

tions. These invariants primarily involved checks such as 1) whether

a variable is URL (33%), 2) a substring of another variable (32%), 3)

equal to another variable (13%), or 4) related to string length (7%),

and (5) 15.6% covering other types.

Conversely, the constraints uniquely detected by our LLM-based

static method mainly occurred in scenarios where the API speci-

fication provided variable descriptions, but the AGORA dataset’s

API responses did not include these variables (often optional fields).

AGORA’s dependency on the diversity of API responses at runtime

limits its detection capability in such cases. For instance, in the

YouTube API, there are 14 distinct rating schemas that appear only

in specific request regions. If AGORA’s API calls do not cover all

regions, these schemas remain undetected.

7.1.3 Result Analysis. A closer look at the cases where our LLM-

based static method was superior reveals two main reasons for

its better performance. First, our LLM-based static method han-

dled more specific domains or ranges of values. For example, in the

Amadeus Hotel API, the roomQuantity value is specified as "an integer

between 1 and 9." Our LLM-based static method correctly identified

7
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Table 2: RBCTest: Combining constraints and invariants

API-Op Static Dyn. Unq. S Unq. D Dist.
Overlapping Combination

Cons. Incons. Total TP P%

A.Hotel 39 61 20 34 54 11 8 109 73 67

GitHub 13 194 3 175 178 4 6 194 188 96.9

GitHub’ 7 127 7 121 128 0 0 152 128 84.2

Marvel 23 55 13 35 48 4 6 113 58 51.3

OMDB 4 15 3 13 16 1 0 18 17 94.4

OMDB’ 1 5 0 3 3 1 0 6 4 66.7

Spotify 21 41 6 35 41 7 3 47 47 100

Spotify’ 12 58 1 29 30 6 5 50 41 82

Spotify" 15 45 1 11 12 6 6 53 43 81.1

Yelp 1 4 1 11 12 0 0 31 12 38.7

YouTube 62 111 45 52 97 5 12 151 114 75.5

Total 198 724 107 527 634 45 46 924 725 78.5

Unq: Uniquely detected, Dist: Distinct, (In)Cons: (In)Consistent.

this constraint and generated an appropriate test, whereas AGORA

provided a general invariant "Numeric," encompassing any inte-

ger, float, etc. Similarly, in the Spotify API, AGORA expected the

thumbnailHeight to be "one of (64, 300, 640)," based on the observed

data at runtime, but our LLM-based static method correctly identi-

fied it as "image height in pixels," which implies any positive integer.

Second, our LLM-based static method excelled in mining specific

constraints. For instance, in the Amadeus Hotel API, the sellingTotal

is defined as "= Total + margins + markup + totalFees - discounts."

While AGORA simply concluded that sellingTotal was numeric,

our LLM-based static method was able to be more specific in the

constraint mined from the specification. However, there were a few

cases where AGORA outperformed our LLM-based static method.

Those cases often involve invariants verifying the format of vari-

ables containing URL, and our LLM-based static method sometimes

treated URLs as mere strings without further validation.

7.1.4 Combined method. From Table 2, we can see that combining

both static and dynamic approaches yield a better result than that of

individual method. In total, RBCTest has 107 constraints detected

only by our static method, 527 detected only by AGORA. For cases

where both approaches detected constraints and invariants on the

same variables, in total, we identified 91 overlapping constraints

and invariants. Among them, 46 cases are inconsistent. Inconsisten-

cies occur where an invariant extracted from execution data defines

a set of instances outside of the set defined by the respective con-

straints mined from the specification. The inconsistencies detected

by RBCTest may reflect a coding bug or out-of-date specification.

As seen in Table 2, RBCTest (the combined method) detects a

total of 924 constraints, of which 725 are true positives, i.e., 78.5%

precision. RBCTest can identify constraints from both views while

maintaining sufficient precision. Despite of lower precision than the

LLM-based method, RBCTest detects more true positive constraints

(725) in comparison to the individual methods, that is, the 198 true pos-

itive constraints from the LLM-based method and the 724 individual

invariants and 618 variable-based grouped invariants from AGORA.

7.1.5 Results on the RBCTest dataset. For generalization, we re-

peated the experiment on our collected dataset (Table 3), having 8

APIs with 83 operations and ‘GET’, ‘POST’, and ‘PUT’. We manually

reviewed the API specifications and identified a set of 600 correct

constraints as the oracle. Due to some services requiring enterprise

subscriptions, we could not execute AGORA on this dataset.

Table 3: Constraints Test Generation on RBCTest Dataset

API # Op. Methods Type GT
RBCTest

TP FP FN P% R% F1%

C.Holiday 4 GET RP 24 16 0 8 100 66.7 80

G.Branch 5 GET,POST RR 49 35 3 14 92.1 71.4 80.4

G.Commit 11 GET,POST,PUT RR 73 54 3 19 94.7 74 83.1

G.Groups 14 GET,POST,PUT RR 85 61 3 24 95.3 71.8 81.9

G.Issues 21 GET,POST,PUT RR 141 92 3 49 96.8 65.2 77.9

G.Project 15 GET,POST,PUT RR 144 110 11 34 90.9 76.4 83

G.Repo. 3 GET,POST RR 44 33 3 11 91.7 75 82.5

Stripe 10 GET,POST

RR 19 12 1 7 92.3 63.2 75

RP 21 16 1 5 94.1 76.2 84.2

Total 83 600 429 28 171 93.9 71.5 81.2

Stdev 2.9 4.9 2.9

Services: Canada Holidays, GitLab {Branch, Commit, Groups, Issues,

Project, Repository}, and Stripe. # of Operations (No. Ops), # of ground

truth constraints (GT), Precision (P), and Recall (R). RR for Request-

Response Constraints, and RP for Response-Property Constraints.

Table 4: LLM-based Constraint Mining, Constraints Test Gen-

eration, and Test Outcomes on RBCTest Dataset.

API Type
Constraints Mining (RQ2) Test Gen. (RQ3) Test Out. (RQ4)

TP FP FN P% R% F1% N ✓ P% ✓ × ?

C.Holiday RP 16 0 8 100 66.7 80 16 16 100 12 0 4

G.Branch RR 36 2 13 94.7 73.5 82.8 36 35 97.2 33 2 0

G.Commit RR 55 2 18 96.5 75.3 84.6 55 54 98.2 40 8 6

G.Groups RR 63 2 22 96.9 74.1 84 62 61 98.4 60 1 0

G.Issues RR 93 2 48 97.9 66 78.8 93 92 98.9 80 7 5

G.Project RR 110 11 34 90.9 76.4 83 110 110 100 102 0 8

G.Repo. RR 33 3 11 91.7 75 82.5 33 33 100 30 2 1

Stripe
RR 12 1 7 92.3 63.2 75 12 12 100 7 0 5

RP 17 0 4 100 81 89.5 17 16 94.1 14 1 1

Total 435 23 165 95.7 72.4 82.2 434 429 98.8 378 21 30

For test outcomes: ✓ (Matched), × (Mismatched), and ? (Unknown).

As seen in Table 3, RBCTest via LLM-based static method (no

AGORA) identified 457 constraints, corresponding to 457 test cases

generated by our LLM-based static method. This includes 28 false

positives and 171 missed constraints, yielding an overall precision

of 93.9% and a recall of 71.5%, with an F1 score of 81.2%. All

standard deviations were below 5%, indicating consistently strong

performance across different APIs. The inaccuracy mainly arises

from the effects of the filter and verifier: in an effort to minimize

the potential for erroneous outputs from the LLM, we restricted

both the input to and the output from the model to ensure accuracy.

This result is consistent with that in Section 7.1.2.

Our analysis reveals that response-property constraints—which

apply to a single response property—are typically straightforward,

focusing on format or value range. They account for 32 of the

429 detected constraints. However, in GitLab services, they were

difficult to detect due to sparse property descriptions. In contrast,

request-response constraints were more prevalent, as they involve

multiple variables, capturing complex relationships where a request

parameter can influence multiple response properties.

7.2 Constraint Mining Accuracy (RQ2)

7.2.1 Methodology. In RQ1, we assess the entire process from the

input of API specifications to the test generation. In this RQ2, we

focus on RBCTest’s first component, Static Constraint Mining via

LLMs. Thus, we did not run AGORA. We used the RBCTest dataset

8
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with the available API specifications. To decide the constraints’

correctness in natural language, we use the following rules:

(1) Request-Response Property constraint: This type of con-

straint on a request parameter must correspond to a property in

the response data that reflects this constraint.

(2) Range-of-Value constraint: The type of constraint must

specify all possible values or provide a specific data range.

(3) Data Format constraint: This must describe the constraints

on data format or refer to widely used formats (e.g., ISO, Unix).

7.2.2 Results. As seen in Table 4, 95.7% of the constraints identi-

fied by our LLM-based static method are valid, although it missed

165 out of 600 constraints noted in the ground truth. Results for all

metrics are notably higher than those of the entire process evalu-

ated in RQ1, as in RQ1’s experiment, we aim to account for both

the validity of constraints and the accuracy of the generated tests.

As in Section 3, the detected constraints fall into two categories:

Response Property constraints and Request-Response constraints.

Our LLM-based static method’s constraint mining for Response

Properties proves more effective than for Request-Response con-

straints, achieving 100% precision and 73.3% recall compared to

94.6% precision and 72.4% recall for Request-Response constraints.

Response Property constraints primarily define format and value

ranges, with clear descriptions like “three-letter currency code” or

“Unix epoch timestamp.” In contrast, Request-Response constraints

are more complex, requiring precise mappings between request

parameters and response properties. For example, in GitLab, ‘since’

and ‘until’ correctly map to ‘created_at’ to enforce range condi-

tions. However, most false positives arise from incorrect mappings,

especially in GitLab, where response body descriptions are lack-

ing. Without details, mappings rely on attribute names, leading to

errors—e.g., the ‘avatar’ parameter (for uploading images) is mistak-

enly linked to ‘avatar_url’ in the response due to name similarity.

7.3 Test Generation Accuracy from Correctly

Mined Constraints (RQ3)

7.3.1 Methodology. While RQ1 evaluates the entire process from

constraint mining to test generation, this RQ3 focuses only on evalu-

ating the test generation component for the constraints correctly de-

tected by RBCTest via our LLM-based mining on the RBCTest dataset

(thus, we did not run AGORA). We performed test generation from

those correct constraints. The generated test cases are manually

evaluated if they correctly verify the associated constraints.

We used the following rules to check if a test case is correct:

(1) Test Input: The generated test case is correct if it correctly

receives two inputs for Request-Response constraints: 1) requested

information and 2) response data, and one input for Response Prop-

erty constraints: response data.

(2) Constraint Handling: The generated test case must cover

all conditions in the constraint.

(3) Test Output: The test must return:

i) 0 (unknown) if lacking of sufficient data for condition checking

(e.g., empty or null value).

ii) 1 (matched) if the provided input satisfies the constraint.

iii) -1 (mismatched) if the provided input does not satisfy it.

We only consider the set of test cases derived from valid con-

straints as identified in RQ2 (denoted as 𝑁 in Table 4).

7.3.2 Results. As shown in Table 4, RBCTest generated 434 test

cases for 435 TP constraints (one test case was discarded by the

verifier), including 401 for Request-Response constraints and 33

for Response Property constraints. It achieves a precision of 98.8%

across 8 services and confirmed 429 correct test cases. Examining

services, 4/8 services achieved a precision of 100%, while the lowest

precision was in the Stripe service, with a precision of 94.1%.

Results indicate that RBCTest excels in generating code for

Response Property constraints, which mainly involve format or value

range validation. In contrast, Request-Response constraints are more

error-prone due to the complex logic required to parse and verify

dependencies between request parameters and response properties.

Further analysis reveals that test generation errors primarily stem

from (1) missing descriptions and (2) ambiguous keywords.

Consider the ‘get-/issues’ endpoint in GitLab Issues, where a

constraint exists between the request parameter ‘due_date’ and a

response property of the same name. The parameter is described as

“Accepts: 0 (no due date), overdue, week, month, next_month,” while

the response property lacks a description. As a result, our tool gen-

erates test cases to validate the property against this constraint,

even though ‘due_date’ in the response is a date-time string, lead-

ing to incorrect tests. Such errors are common in GitLab due to

insufficient descriptions for response properties.

In the same ‘get-/issues’ endpoint, the ‘milestone’ parameter is

described as “The milestone title. None lists all issues with no mile-

stone. Any lists all issues that have an assigned milestone.” The API

filters returned issues based on ‘None’ or ‘Any’ from the request pa-

rameter. However, RBCTest misinterpreted ‘None’ as Python’s null,

leading to errors. This mistake in ‘milestone’ propagated to 13 other

incorrect test cases due to its involvement in multiple operations.

7.4 Usefulness: Detecting Mismatches between

Constraints and Response Bodies (RQ4)

7.4.1 Methodology. We use the generated test cases to detect mis-

matches between the constraints in the API specification and the API

response bodies. With this goal, we did not run AGORA. For each

API endpoint, we execute the API with multiple sets of request pa-

rameters. For each API execution, we collect 1) request information

(i.e., what is expected from the API call), and 2) response data (i.e.,

the actual response). Response data contains multiple properties,

each attached with constraints and generated constraint test cases.

We ran the test cases associated with the response data to collect the

outcomes. We also ran the inputs used in AGORA to verify against

our test cases of correctly generated constraints. If the result is

false, we report a mismatch. Otherwise, it is a match.

7.4.2 Results. We performed test runs on 429 correctly generated

tests from RQ3 (Table 4). Our test results indicate 378 ‘matched’

response bodies (i.e., consistent with the specification), 21 ‘mis-

matched’, and 30 ‘unknown’. Out of 434 correctly mined constraints,

378 were verified by the tests, meaning that 87.1% of the constraints

are met by the actual execution of the SUTs. Our tool detected

21 mismatches, revealing inconsistencies between specifica-

tions and execution of the APIs. An ‘unknown’ occurs when a

property is absent in the response body due to its optional nature.

9
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Table 5: Contribution of components in RBCTest (RQ5)

Variant

Constraints Mining

TP FP FN P R F1

RBCTest 435 22 165 95.2 72.5 82.3

RBCTest
−

197 127 403 60.8 32.8 42.6

7.4.3 Analysis. We revealed the following root causes of these mis-

matches: (1) incompatible data formats, (2) not-explicitly-described

nullable properties, and (3) inter-parameter request dependencies.

(1) Incompatible Data Formats: Our tool detected 21 con-

straintmismatches, mainly fromGitLab services. For instance, the

constraint "date will be returned in ISO 8601 format YYYY-MM-DDTHH:MM"

appears in GitLab operations. However, the actual data format is

"2012-09-20T08:50:22.000Z", which includes a decimal part for sec-

onds, leading to an inconsistency. Interestingly, we found that three

instances of this type of inconsistency were reported as the is-

sues on the GitLab forum [1, 3, 4]. This is anecdotal evidence on

RBCTest’s usefulness in detecting real-world issues.

(2) Not-Explicitly-Described, Nullable Properties: This issue

is common in GitLab, where some response properties are nullable

but lack descriptions in the specification, leading to parsing errors.

Notably, these issues have been reported on the GitLab forum [2].

(3) Inter-Parameter Request Dependencies: This was found

in only one case. For the operation ’GET/groups’ from GitLab Group,

there is a constraint on the request parameter "order_by" affecting

the "name" property in the response data. This logic dictates that the

array of groups in the API response should be sorted according to

the "order_by" parameter. RBCTest checked only one-to-one con-

ditions among parameters, whereas the sorting order depends on

both "order_by" and "sort" parameters (specifying the sort direction).

As a result, this resulted in a detected mismatch.

7.5 Ablation Study (RQ5)

In this experiment, we first built a variant that does not contain both

observation-confirmation and semantic verifier components. To

learnmore the static method, the dynamic component was excluded.

We modify the prompt in Figure 4 as follows for constraint mining.

Instead of providing GPT-4-Turbo with observations derived from

another prompt, we feed the description of the parameters and

response schema as in the API specification. This prompt replaces

Blocks 1 - 5 from Figure 3. After providing data on a property,

we instruct the LLM to decide if the given property contains a

constraint and if there is enough to verify it. This modification

merges steps 6 and 7 into a single step. The output is yes or no.

As seen in Table 5, the elimination of observation-confirmation

prompting and semantic verifier affects the outcomes, as evidenced

by a reduction of 238 correct constraints. Concurrently, there is an

increase in the number of false positives. The F1-score of RBCTest
−

is reduced by half. False positives frequently arise when the model

mis-mapping the request parameters with the response properties

based on their names. Such mistakes are less common in RBCTest,

where the observation prompt is used to enhance the property be-

fore it is processed by the confirmation prompt. This result confirms

our key contribution of our LLM prompting strategy.

The semantic verifier’s goal is to remove the invalid constraints

to improve precision. We currently used a simple verifying mecha-

nism via examples in API specification (Section 2.3). We removed

the semantic verifier and ran the static component on two datasets.

In the RBCTest dataset with 89 examples, one example invalidated

one detected constraint. In the AGORA dataset, with 223 exam-

ples over 11 API operations, 6 examples were able to invalidate

6 false-positive constraints. Overall, the verifier accurately con-

firmed all valid constraints and successfully eliminated 7 incorrect

constraints, thus achieving higher precision (89.0% increasing to

91.2%) while maintaining recall (72.5%). These results show that

more examples in the API are useful to invalidate more incorrect

constraints and confirm the correct ones. Moreover, other types

of semantic verifier can be integrated into our framework such as

constraint solvers, SMT solvers, domain-specific checkers (valid zip

code, phone number format, or valid date checkers), etc.

8 Threats to Validity

1. Internal Validity. LLM hallucinations might lead to unexpected

outcomes. To mitigate this, we incorporated (1) a semantic verifier

(Figure 8) and (2) observation-confirmation prompting (Figure 3),

which enhance validation through external API specifications and

internal consistency checks. Our ablation study confirmed that

these methods have a positive impact on performance. We seg-

mented specifications into small sections (Figure 3) to reduce con-

text window, minimizing hallucinations and improving accuracy.

2. External Validity. Our dataset may not fully represent the API

landscape, affecting generalizability. Outcomes could vary with

different datasets, particularly those with unique constraints. Gen-

erated test cases may miss general constraints or edge cases beyond

what is explicitly documented. Implicit constraints not in API spec-

ifications might also be valid but unaccounted for. External tools

may introduce inaccuracies, potentially affecting the results.

9 Related Work

Recent surveys on API testing [15, 17, 21, 25, 26, 28, 32] reveal a

trend towards automation adoption. AI/ML are used to enhance var-

ious aspects of API testing including of generating test cases [14, 27,

33], realistic test inputs [8], and identify defects early in the devel-

opment [11–13, 24, 31, 37–40]. AGORA is a dynamic approach [9].

The advances of LLMs have impacted API testing. [22] leverages

the language capabilities of GPT to fully automate API testing using

only an input OpenAPI specification. It builds a dependency graph

among API operations, generating test scripts and inputs. Moreover,

[20] applied GPT to augment specifications, enriching them with

explanations of rules and example inputs. Before the era of LLMs,

ARTE [8] aimed to generate test inputs for API testing, employing

NLP. Morest [24] introduced a model-based RESTful API testing

method using a dynamically updating RESTful-service Property

Graph, showing improvements in code coverage and bug detection.

RESTler [14] is a stateful fuzzing tool of REST APIs, which ana-

lyzed specifications, inferred dependencies among request types,

and dynamically generated tests guided by feedback from service

responses. Similarly, RestTestGen [33] applied specifications for au-

tomatically generating test cases, checking both response status and

response data schemas. NLPtoREST [19] used the NLP technique
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Word2Vec [29] to extract rules from human-readable descriptions

in a specification, enhance, and add them back to the specification.

10 Conclusion

Novelty. This paper presents RBCTest, an approach to mine the

constraints on API response bodies and automatically generate test

cases to validate them. Our key findings include 1) our LLM-based

static method with Observation-Confirmation prompting

achieves high precision in constraint mining of 91.2%; and 2) when

combining static and dynamic approaches, RBCTest takes ad-

vantage of both LLM’s capabilities to comprehend natural language

in API specifications, when available, and API execution informa-

tion to detect constraints on response bodies. With the combination,

RBCTest detects more true positive constraints, while reducing a

bit precision. RBCTest-generated test cases was able to detect 21

mismatches in real-world APIs, four of which were confirmed

by developers in their development forums.

Practical Impact. RBCTest allows teams to test API services of

SUTs in both the development and evolution stages. By using API

specifications, RBCTest supports applicable use cases where devel-

opers need to investigate and test third-party APIs with publicly

available specifications before using them for their applications.

Data Availability. Our data and code is publicly available [7].
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