2504.15917v1 [cs.SE] 22 Apr 2025

arxXiv

Towards Test Generation from Task Description for Mobile
Testing with Multi-modal Reasoning

Hieu Huynh
Hai Phung

Hao Pham
minhhieu2214@gmail.com
20127018@student.hcmus.edu.vn
20127155@student.hcmus.edu.vn
University of Science, VNU-HCM
Ho Chi Minh city, Vietnam

Abstract

In Android GUI testing, generating an action sequence for a task
that can be replayed as a test script is common. Generating se-
quences of actions and respective test scripts from task goals de-
scribed in natural language can eliminate the need for manually
writing test scripts. However, existing approaches based on large
language models (LLM) often struggle with identifying the final
action, and either end prematurely or continue past the final screen.

In this paper, we introduce VisiDRoID, a multi-modal, LLM-based,
multi-agent framework that iteratively determines the next action
and leverages visual images of screens to detect the task’s com-
pleteness. The multi-modal approach enhances our model in two
significant ways. First, this approach enables it to avoid prematurely
terminating a task when textual content alone provides mislead-
ing indications of task completion. Additionally, visual input helps
the tool avoid errors when changes in the GUI do not directly af-
fect functionality toward task completion, such as adjustments to
font sizes or colors. Second, the multi-modal approach also ensures
the tool not progress beyond the final screen, which might lack
explicit textual indicators of task completion but could display a
visual element indicating task completion, which is common in GUI
apps. Our evaluation shows that VisiDroID achieves an accuracy
of 87.3%, outperforming the best baseline relatively by 23.5%. We
also demonstrate that our multi-modal framework with images and
texts enables the LLM to better determine when a task is completed.

1 Introduction

In mobile testing, testers often simulate user’s tasks on the ap-
plication when performing end-to-end testing. Coming from the
requirements, each task includes a natural language description of
its goal to be performed on the GUI of the application under test
(AUT). One common approach to generating test cases and scripts
for automated testing on the AUT is to record user’s actions. The
testing tools (e.g., Espresso [2], Appium [1], and [3]) are used to
launch the AUT in a controlled test environment. Testers manu-
ally carry out the actions in the test environment to achieve the
task, allowing for interactions with the AUT, e.g., tapping buttons,
entering text, navigating between screens, etc. As the actions are
performed, the test environment records all the steps. This record-
ing includes details like which elements are interacted with (e.g.,
buttons, text fields) and what inputs are provided. The recorded

“Corresponding author.

Tien N. Nguyen
University of Texas at Dallas
Dallas, Texas, USA
tien.n.nguyen@utdallas.edu

Vu Nguyen”
University of Science, VNU-HCM
Katalon Inc.

Ho Chi Minbh city, Vietnam
nvu@fit.hcmus.edu.vn

sequence of actions is then transformed into a test script by the test
environment. The tester sometimes could directly write the test
script to complete the task. This script can be modified or executed
in future testing sessions in a controlled test environment.

Unfortunately, manually performing and recording actions or
writing scripts for every task in mobile testing can be time-consuming
and error-prone [10, 23]. It also hinders the prospect of automating
the software development process from requirement engineering
to testing. Automating this process speeds up test creation and
scales it, while also reducing the likelihood of mistakes [22]. Early
methods to automate this process introduced structured, domain-
specific languages such as e.g., Gherkin and Cucumber [9] to assist
testers in defining actions and behaviors.

With advances in machine learning (ML), large language models
(LLMs)-based solutions have emerged to automate this process [15,
18, 26, 32]. These LLM-based approaches rely more on the textual
content of the page to decide the next action and if the task is
accomplished. While achieving successes, they have experienced a
common shortcoming in identifying the final action, and either stop
too early or continue beyond the actual final screen. The reason is that
the DOM structure/texts do not always accurately reflect the screen
content. For example, in a photo app, switching from the front
camera to the back camera may not have a clear textual indication
of completion, apart from the visual change on the screen.

This paper introduces VisIDROID, a multi-modal, automated mo-
bile testing framework that enhances LLMs’ comprehension of a
GUI page by analyzing both its visual representation and textual
content. Our hypothesis is that this multi-modal approach can enable
an LLM to make more precise decisions about subsequent actions as
well as the decision on the completeness of the actions for the given
task. The multi-modal approach enhances an LLM in two significant
ways. First, it enables the LLM to avoid prematurely terminating a
task when textual content alone provides misleading signals of task
completion. For instance, a confirmation screen may contain text
similar to that of a task’s final screen, potentially causing confusion.
However, incorporating visual cues on the final screen allows the
tool to recognize that the task is not yet completed. Additionally,
visual input helps the LLM avoid errors when changes in the GUI
do not directly affect functionality toward task completion, such
as adjustments to font sizes or colors. Second, the multi-modal ap-
proach also ensures that the LLM stops at the correct action and
does not progress beyond the final screen. For example, the final
GUI might lack explicit textual indicators of task completion but

Conference’17, July 2017, Washington, DC, USA

could display visual elements that enable the LLM to recognize the
task’s conclusion accurately. These visual changes can complement
the textual contents to signify the completeness of the task in GUI
apps. For example, a checkbox is marked as WiFi is enabled for the
Wifi-activation task, which is easily recognized on the screen.

Specifically, VisiDroiD takes the goal of a task described in
natural language and automatically interacts with the testing envi-
ronment to perform the actions on the app and generate the test
scripts without human intervention. Initially, an LLM is prompted
to decide the first action based on the description. The test envi-
ronment then executes this action. The image of the GUI page,
along with its textual content, is processed by another LLM in a
multi-modal setup. This LLM is responsible for deciding whether
the task has been completed and for termination.

VisIDroID also combines multi-modal framework with task mem-
ory and persistent memory (i.e., accumulated experience) that work
together to enhance the LLM’s ability to learn from recent interac-
tions and make informed decisions for next actions or completion.
Short-term (task) memory allows the LLM to retain details on the
most recent steps and their outcomes, ensuring essential context
and continuity. The task memory scheme provides the LLM with
information on past actions, GUI descriptions, and changes to the
page after each action. Meanwhile, persistent memory leverages
a broader set of patterns and knowledge from past interactions,
enabling the LLM to recognize similarities with past sequences of
actions in analogous situations encountered earlier to apply to the
current one. For this, VIsSIDROID uses a self-reflection mechanism
to reflect on the executed task, assessing how the task is achieved
and the experience gained. Both (in)correct sequences are stored as
persistent memories to assist VIsSIDROID in future tasks.

We evaluate VisiIDRoID using the dataset provided by Wen et
al. [15], including 150 goal-based tasks on 12 Android applications.
Out of 150 tasks, VIsSIDROID generated 131 exact-match sequences
of actions, resulting in an exact-match accuracy of 87.3%, outper-
forming the best baseline AutoDroid [15] (accuracy of 70.7%), which
is a 23.5% relative improvement. The generated exact-match ac-
tion sequences are also used to create test scripts for automated
regression testing, achieving a successful execution rate of 82.4%.

In brief, this paper makes the following key contributions:

1. Multi-modal Reasoning of LLMs. VisiIDRroID supports auto-
mated generation of sequences of actions and test cases/scripts by
integrating vision capability of LLMs with memory mechanisms.

2. Extensive Empirical Evaluation. Our evaluation demon-
strates VisIDRoID’s effectiveness and its out-performance over the
state-of-the-art approaches. Our data and code are available [4].

2 Motivation

Fig. 1 shows an example of an Android app, which is launched
within a testing environment, e.g., Espresso or Appium. A tester is
provided with a task of "setting an alarm at 8:00 AM". (S)he is ex-
pected to manually write the test script or manually perform the ac-
tions on the Android GUI through one or multiple screens within the
testing environment to achieve the task. (S)he achieves the task de-
scription by clicking the "Alarm" button, then entering the specified
time and clicking on the "OK" button for confirmation (SCREEN 3)

Hieu Huynh, Hai Phung, Hao Pham, Tien N. Nguyen, and Vu Nguyen

5:03:33 PM 7:00
' 9:00.. :
8:00.. .
IR -
SCREEN 1 SCREEN 4
i =
o ¢ o6 E ©

Figure 1: Task: "Set Alarm at 8:00am". Existing methods re-
lying on DOM/text contents incorrectly stop at SCREEN 3
because its DOM/texts contain "8:00am”, which matches the
phrase in the task’s description (the final screen is SCREEN 4)

to reach the final SCREEN 4. The test environment records the se-
quence of actions into a test script for later test generation and reuse.

Several approaches were proposed to interact with the test envi-
ronment and generate a sequence of actions on the Android app
from the task description, e.g., GPTDroid [26], AutoDroid [37],
DroidAgent [42], Guardian [32]. They struggle in determining the
termination of a task. In Fig. 1, the correct final screen is SCREEN
4. However, the LLM-based models rely on the DOM content of the
screen, leading to prematurely and incorrectly stopping at SCREEN 3
in Fig. 1, and do not select the "OK" button to confirm alarm cre-
ation. The reason is that SCREEN 3 also contains the text "8:00am"
that matches the same phrase in the task’s textual description, which
might confuse the LLMs. If SCREEN 4 is provided, the LLMs might
recognize that the task was finished as the toggle for the alarm was
set at 8:00 am. See more cases where visual cues help in Section 5.2.4.

2.1 Key Ideas

2.1.1 Key Idea 1 [Multi-modal Framework for Mobile Test
Script Generation]. Building on the notion that "a picture is worth
a thousand words," we harness LLMs’ vision capabilities in a multi-
modal framework to enhance their comprehension of a GUI page
by analyzing both its image and content. Our multi-modal approach
aims to enable LLMs to make more accurate decisions on the complete-
ness of the action sequence. LLMs are expected to link the textual
description of an image to the visual cues, ensuring that a task
proceeds or stops correctly. In the same way, they can connect the
task’s goal to the visual layout of each screen in the Android app.
As a result, we expect them to better identify the final screen when
the task is completed as follows. First, relying solely on textual
signals can lead to errors, such as ending a task early when an
earlier screen includes texts that are misleadingly similar to
those on the final screen. For example, a payment confirmation
message might resemble a transaction completion screen. By inte-
grating visual cues, like specific button layouts or icons on the final
screen, the LLM avoids such mistakes. Second, the visual changes
are common to signify task completeness in GUI apps, while
the DOM/text contents do not always reflect well the layouts.
The LLM can confidently identify the ending of a task using vi-
sual cues when textual indicators are absent. For instance, a final
screen might lack completion text but include an image, such as a

Towards Test Generation from Task Description for Mobile Testing with Multi-modal Reasoning

Conference’17, July 2017, Washington, DC, USA

Task Memory

Persistent Memory

GUI description:
ID: 9,
Widget_type: Button|
Pos_action: Touch

History Actions:
1. Click "More options"
2. Click "Sort"

Observe:

More buttons
appears after clicking
"More options"

Rules:
1. "Sort" button in "More
options" menu, not in

Optimized Steps:
1. From MainPage, press|
"More options" button

3. Press "OK" button

"Setting" 2. Click "Sort" button in
2. .. the menu

@)

0
®
D Reflector

Ul Changes
Observer Training phase only
multimodal = == s---p--------------m—mm——
AAA @ @
i Sequence of .
Action > Executor —>» Verifier 3 Actions Seque.nce Test Script
Selector Screenshot Ranking Generator
Task
* | completed
incompleted

Figure 2: VisIDRroID: Test Script Generation from Task Descriptions with Multi-Modal Reasoning

check mark signifying the completion of a configuration setting, a
change in the current screen signifying the front and back cameras
were switched, or the current color theme of the app was changed.
This visual cue prevents the LLM from over-executing unnecessary
actions beyond the task’s end. Visual input also helps it ignore
irrelevant changes, e.g., modifications to colors or formatting.

2.1.2 Key Idea 2 [Tterative LLM-based Agent Planning]. In-
spired by the ReAct planning [40], we develop an iterative LLM-
based agent planning scheme for VisiDroip. In VisiDroID, the
central LLM agent decides on the next action based on the observa-
tions of (1) the current GUI content observations, (2) the short-term
memory of previous states and actions, (3) descriptions of content
changes, and (4) the long-term memory of (in)correct action se-
quences. This chosen action is then executed on the current screen
by a testing environment, and the resulting new content is used for
the next iteration until the task is considered accomplished.

2.1.3 Key Idea 3 [Combination of Short- and Long-term Mem-
ories]. A crucial aspect of navigating complex GUI tasks is main-
taining awareness of previous steps and the evolving states of the
GUI pages. For that, we integrate into VisIDROID a task memory
mechanism that serves as a short-term memory of the current task
execution, providing the LLMs with recent actions, GUI descrip-
tions and any changes to the GUI page following each action. This
task memory allows the LLMs to retain recent actions and their
outcomes, enabling more informed decision-making in the next
action. For example, in an Android app for retails, after a sequence
of "searching” for a product, "adding to cart" the selected one, and
"going to cart”, a likely next action is to "proceed to checkout".

We also record the entire sequence of actions taken, along with
their corresponding success or failure outcomes. We call it persis-
tent memory, which draws from a wider set of past experiences,
allowing the model to recognize patterns, similarities with prior
failures/successes, and apply successful strategies. For example,
a correct sequence A ("Browse-Purchase-Pay") is recorded as fol-
lows. Action 1: Tap on "Browse Categories.", Action 2: Select "Elec-
tronics., Action 3: Tap on a product (e.g., "Wireless Headphones"),
Action 4: Tap "Add to Cart.", Action 5: Go to "Cart., Action 6: Tap

"Proceed to Checkout.", Action 7: Enter payment details, Action 8:
Tap "Confirm Purchase., and Final Screen: "Order Confirmation”
screen is displayed. Similarly, there is an incorrect sequence B
("Search-Purchase-Pay") for a purchase task with payment: Action 1:
Tap on "Search" and enter "Electronics.”, Action 2: Tap on "Wireless
Headphones., Action 3: Tap "Buy Now.", Action 4: Tap "Confirm
Purchase" without entering payment details, and Final Screen: "Error:
Payment details missing" screen is shown.

Persistent memory enables the model to evaluate the correctness
of actions by analyzing the outcomes of prior sequences. It can
learn the patterns from successes: The sequence includes steps like
"Add to Cart" and "Proceed to Checkout" before confirming purchase.
Entering payment details is necessary before final confirmation. It
can also learn the patterns from failures: Skipping critical steps,
such as entering payment details or adding items to the cart, leads to
errors. Direct actions like "Buy Now" or "Confirm Purchase" without
prerequisites often fail. If the current task involves ensuring that
the user reaches the "Confirmation" screen, persistent memory
will guide the model to prioritize sequences similar to the correct
sequence A while avoiding pitfalls shown in B. The model adjusts
its behavior to ensure the correct sequence of actions is followed.

2.2 VisiDroip Overview

Figure 2 displays VisiDroiD’s workflow. It takes the description of a
task as input, automatically interacts with the testing environment
to perform the actions on the app, and generates the test scripts
without human intervention. Its three key modules include:

1) Iterative LLM-based Action Sequence Generation with a
Multi-Modal Framework. The iterative process revolves around
the LLM agent Action Selector (1) as follows. From the given app
and task description, VIsIDROID initiates the iterative process using
the specified starting GUI page. At each iteration, the LLM agent en-
gages in reasoning to determine the next action based on performed
actions, Ul changes, and experiences from persistent memory. This
action, with the current GUI page, is fed into an executor, which
executes the app at the selected page and presents the next page
for the next iteration. Example actions include scrolling, touching,
long-pressing, filling forms, or navigating back. The LLM can also

Conference’17, July 2017, Washington, DC, USA

Action Selection Prompt = '''You are a testing agent... {system_prompt}
Your task is to {task}

You have completed the following actions:

{history_actions}

[Action 1]: Click button 'A’

[Observation 1]: Clicking 'A' navigate the app to page 'B'

POSSIBLE NEXT ACTIONS: {candidate_actions}
Experience that can be relavent to this task: {persistent_memory}

Your job is to choose the most likely next steps to complete the task....

The format of the JSON response must strictly follow these rules:

{
"chosen_action": ... (the index of the potential action that you choose)
"action_description": ... (a string describing the action you choose)
"reason": ... (a string describing the reason why you choose the action)

PNDUTRWN = ©O©®N®U N WN =

Figure 3: Action Selection Prompt (Main Prompt)

pause if a loading screen is detected. This process iterates until
Verifier (3) concludes that the task has been completed.

Vision Capability and Task Completion Decision: Once the
LLM Action Selector (1) chooses an action, the Executor executes
it, and a screenshot of the updated GUI page is captured. The LMM
(Large Multi-modal Model) Verifier (3) analyzes both the GUI de-
scription (in JSON format) and the actual screenshot, using a multi-
modal approach to ensure more precise task completion decisions. The
Verifier (3) determines if the task has been successfully completed
by examining the screenshot. If the task remains unfinished, the
Verifier (3) asks Action Selector (1) to perform the next action. This
feedback mechanism is vital, as it can identify errors from the action
history and trigger a back action to correct the sequence. The states
of application before and after performing an action are compared
to produce a list of UI changes. This change list is then provided to
the LLM Observer (2), which observes major changes in the GUI
page and stores this observation into task memory for the Action
Selector (1) to use in the next iteration.

2) Task Memory: As the process advances, the sequence of
actions is logged. The tool maintains this history as a list of GUI
pages, actions taken, and observations of screen changes. This
serves as short-term memory, allowing the LLM to track recent
actions and the evolving state of the GUIL After determining the
next action, the action history is updated.

3) Persistent Memory: Prior research [35] has shown that
reflection-based experience can enhance the LLM’s performance via
reinforcement learning with examples. In this, the LLM’s reasoning
is improved by incorporating few-shot examples of successful/-
failed action sequences. These examples, generated by the Reflector

4) based on prior sequences, include rules such as: "Confirming
changes by clicking ‘Save’ button." or "Clicking to ‘More...’ to find
the caption settings". Task memory retains the immediate context
and recent action outcomes, while persistent memory provides a
repository of learned strategies and experiences. Such long-term
knowledge in persistent memory is recorded as texts to the LLMs.

4) Test Case Generation: To facilitate testers to review and re-
play within the target app, VISIDROID concatenates each individual
action from the produced action sequence into a test script.

3 Iterative Action Sequence Generation

Hieu Huynh, Hai Phung, Hao Pham, Tien N. Nguyen, and Vu Nguyen

Algorithm 1 Action Sequence Generation Algorithm
Input: goal (str), pers_mem (dict), is_training (bool) , executor

1: pm « pers_mem()
2: procedure VISIDROID(goal, isTraining, executor)
3: tm < TaskMemory() > init an empty task memory

4 tm.setGoal(goal)
5 curUiState « executor.curUiState()
6 candActions « extractActionables(curUiState) > buttons, text
fields, checkboxes, etc.
7: action « actionSel.next(tm, pm, candActions) > (1
8: prevUiState < None
9: while ! tm.finished and len(tm.actions) < MAX do
10: curUiState, curScreen « executor.execute(action)
11: tm.addAction(action)
12: uiChanges « detUIChanges(prevUIState, curUIState)
13: obs « observer.observe(action, uiChanges) > (2
14: tm.addObservation(obs)
15: tm.finished « verifier.verify(tm, pm, curScreen) > (3
16: if ! tm.finished and len(tm.actions) < MAX then
17: candActions « extractActionables(curUiState)
18: action « actionSel.next(tm, pm, candActions) > (1
19: prevUiState < curUiState
20: if isTraining then
21: rules, optimizedSteps « reflector.reflect(tm) > (4
22: pm.updateRules(rules)
23: pm.updateSteps(optimizedSteps)
24: return tm.actions, tm.finished

3.1 VisiDroip Algorithm

Algorithm 1 outlines the main flow for generating an action se-
quence for a task. This function takes as input a goal-based task
description (goal), persistent memory (pm), a flag indicating training
or evaluation mode (isTraining), and the mobile interface the agent
interacts with (executor). After processing, the function returns a
list of actions and a boolean indicating if the task is complete.

Initialization: First, a task memory object is initialized to track
the goal, executed actions, observations, and task completion status.
The current state of the Ul is captured using executor.curUiState().
A set of possible actions (e.g., pressing buttons, swiping) available
in this Ul state is then extracted.

Action Loop (Lines 7-19, Algorithm 1): The algorithm enters a
loop involving three main components: Action Selector (1), Ob-
server (2), and Verifier (3) . This loop continues until the Verifier

3) decides that the task’s goal is completed or the maximum num-
ber of actions is reached.

1. Action Selector. The Action Selector (1) takes responsible
for selecting an appropriate action to perform on target element.
The prompt is structured as Figure 3. At each iteration i, the Action
Selector engages in reasoning R to determine the next action based
on three external observations O.

a. The first observation O is derived from short-term task mem-
ory, containing details about previously taken actions (Lines 3-5,
Figure 3). For the initial action, the short-term memory is empty.

b. The second observation Oy, also derived from short-term task
memory, includes a description of the GUI page after the latest
action performed by the test environment. This observation is

Towards Test Generation from Task Description for Mobile Testing with Multi-modal Reasoning

Task Verify Prompt = '''You are a testing agent... {system_prompt}
Your task is to {task}

You have completed the following actions:

{history_actions}

[Action 1]: Click button 'A’

[Observation 1]: Clicking 'A' navigate the app to page 'B'

Current UI screen: {screenshot}

Experience that can be relavent to this task: {persistent_memory}

Based on the task execution history, task end condition and the current
state of the app, you need to verify the task execution if the task
is done or not.

The format of the JSON response must strictly follow these rules:

{

SN U A WN =

"screen_description": ... (a string describing current screen)
"task_done": ... (a boolean indicating if task is done)

aswN =

Figure 4: Multi-Modal Task-Verifying Prompt

produced by the Observer (2) (Line 6, Figure 3). For the initial
action, the starting page is used.

c. The third observation Oj3 is a list of actionable UI elements
extracted from the current UI state (Line 8, Figure 3). This list is
structured in JSON format, with each actionable UI element paired
with a set of associated actions (e.g., touch, long touch, swipe, input).

d. The fourth observation O4 comes from persistent memory
(initially empty) and consists of prior experience and optimized
steps from previous executions of the same task (Line 10, Figure 3).

The Action Selector (1) decides the next action to perform on the
app under test aj4+1 by applying the reasoning process R(O1, O,
03, 04). The selected action is executed on the device via Executor
and stored in the task memory for reference in next steps Oj.

2. Observer. The Observer (2) is responsible for detecting major
changes in the UI before and after an action’s execution. Once an
action is performed, the current Ul state is compared with the pre-
vious state to identify any changes, additions, or removals (Line 13,
Algorithm 1). Feeding all changes directly to the LLM for the Action
Selector may be overwhelming. Thus, an intermediate step called
observing is introduced. The Observer (2) digests these UI changes
and provides a concise summary of key changes, e.g., "After pressing
the ‘Ok’ button, a confirmation dialog appeared.” These observations
are then stored in Task Memory for subsequent inference steps (O2).

3. Multi-modal Verifier. After performing an action, VisiDroID
captures the current state and screenshot, then invokes the Ver-
ifier (3) to check if the task has been achieved. Once the task is
completed, the loop ends, and the result is returned. It uses a multi-
modal verifier that leverages both text-based UI descriptions and
screenshots, as visuals often convey more information than text
in mobile UI testing. For instance, verifying visual styles of native
Android elements (e.g., color, font, and opacity) is challenging with
most mobile automated tools (e.g., Katalon, Appium). Tasks involv-
ing style verification thus benefit from a multi-modal approach.

Another challenge is defining the relative positioning of UI ele-
ments, critical for tasks like element repositioning, image scaling,
and alignment. While absolute positions are represented by x and y
coordinates, assessing spatial relationships among elements is com-
plex. The multi-modal approach enables more precise verification
of element positioning and layout.

The Verifier (3) receives five inputs: a visual input (current
screenshot) and four textual inputs the goal, previous actions,

Conference’17, July 2017, Washington, DC, USA

observations, and persistent memory. The structure of our prompt
is shown in Figure 4. For multi-modal prompting, the screenshot
is encoded as a base-64 string and included in the API request
alongside the textual prompt directed to the LLM. We instruct
the Large Multi-modal Model (LMM) Verifier (3) to return a task-
completion status of ‘yes’ or ‘no, determining the ending.

3.2 Memories and Training

Memories. As seen in Figure 2, there are two types of memory:
Task Memory and Persistent Memory. Task Memory is associated
with a single execution; once the task ends, this memory is reset.
Task Memory includes a list of performed actions (collected from
Action Selector (1)), a list of UI change observations after each
action (collected from Observer (2)), and the current UI state. In
contrast, Persistent Memory consists of a list of rules and a list of
optimized steps, generated by the Reflector (4) . Persistent Memory
is built up during the Training phase and remains unchanged during
the Evaluation phase. This memory is shared among executions.

Training Phase. VisIDRoID employs a two-phased reflection
strategy: the Training Phase and the Evaluation Phase. During the
Training Phase, Persistent Memory is gradually built up after each
execution and remains unchanged throughout the Evaluation Phase.
Inspired by prior works [35], we employ a self-reflection mecha-
nism in the training phase, without the need for human intervention.
Once the agent completes a task, the Reflector module (4) reflects
the generated sequence of actions against the task description to
check if it successfully addressed the task goal or failed. The Re-
flector module builds reasoning on three pieces of information
Reeflect (01, O2, O3), where O is the list of performed actions, Oy
is the list of UI change observations, and O3 is the task description.
RReflect €an return in two formats, with two scenarios:

1. If the generated sequence fails to meet the task’s goal, <"failed",
[rules to avoid]>, VISIDROID instructs the LLM to return a set of rules
based on the failed sequence to avoid in future runs. These rules
are stored in Persistent Memory. For instance, in the first training
iteration for the task "Add the holidays of the United States to the
calendar," the agent ended the task before clicking "Save," resulting
in failure. Here, the Reflector extracted the (confirming) rule "Ensure
confirming the addition to avoid leaving the task incomplete".

2. If the generated sequence successfully addresses the task’s
goal, <"success", [rules to follow], [optimized steps]>. Although the
task is addressed, it may have some excessive actions. VISIDROID
then extracts the rules that can avoid unneeded actions and returns
an optimal path for reference in the next runs. These rules and
the optimal path are also stored in Persistent Memory. For example,
for the task "Sort contacts based on ‘Date created’ in descending
order," the model initially navigated to the settings menu to find
the sort option. After failing to find it, it returned to the "More
options" menu, where it found the "Sort by" button. The initial
steps were not optimal, so the Reflector provided the rule to go
directly to the "More options" menu, and the optimized steps are
["More options"—"Sort by"—"Date"—"Descending"—"OK"].

Conference’17, July 2017, Washington, DC, USA

3.3 Candidate Ranking and Test Generation

For each task, the agent generates multiple action sequences inde-
pendently (three in our experiments) and selects the most appro-
priate one. The generated sequences are ranked using a heuristic
solution based on textual matching with the task description.

VisiDroiD splits a task description into a set of terms T, such as
"Alice” and "Favorites" in "Add contact Alice to Favorites". For each
generated action sequence S;, we gather the set U; of interacted UI
elements (e.g., <Button content-desc="Add to Favorites"/>). For each
U;, we define a scoring function:

Score(S;) = Z I(w € U),
weT
where I(w € U;) is an indicator function that equals 1 if the word
w from T matches any word in U; and 0 otherwise. The total score
for each sequence S; is the sum of matched words, representing its
alignment with the description. The sequence S; with the highest
score is selected as the most relevant for the next step: Spest =
arg max; Score(S;). This scoring ensures that the sequence best
matching the description terms is chosen to guide the LLM.

VisiDRoID is proposed toward generating Ul-level test cases
and scripts for automated regression testing of mobile apps. For re-
gression testing, the oracle of a test is derived from the previous
execution of the app. VisIDRoID is used in a scenario in which
testers provide descriptions or goals of tasks that end-users would
use the AUT and generate test cases and scripts. Generated test
cases and scripts can be independently executed using tools like Ap-
pium or Katalon without using LLMs. Task descriptions or goals can
come from requirements. With this scenario, test cases and scripts
are similar to those generated using the popular record and replay
approach [19], but it eliminates the need of testers performing the
recording step manually on the AUT.

In VisiDroIp, the generated sequence of actions is converted to
test cases and scripts for regression testing. Formally, a generated
test case T is represented as: T = (/\;f‘:1 ai), where ay,as,...,an
are n actions (test steps) in the sequence. We developed an in-
terpreter that converts action sequences into Appium test cases,
enabling cross-device integration. During execution, each action
in the generated sequence is interpreted as a test step, performing
the designated Ul action on the target element. If any step fails, the
test case is terminated and marked as ‘failed’.

4 Empirical Evaluation

To evaluate VisIDRroID, we seek to answer the following questions:
RQ1. [Effectiveness on Generating Sequences of Actions].
How accurate does VIsIDROID generate sequences of actions for a
given task whose goal is described in natural language?
RQ2. [Effectiveness in Test Script Generation]. How well is
VisIDROID in test script generation?
RQ3. [Ablation Study: Memory]. How much does our memory
mechanism contribute to overall performance of VisiDroip?
RQ4. [Ablation Study: Multi-Modal]. How much does multi-
modal reasoning contribute to overall performance of VisiDroip?
RQ5. [Ablation Study: Ranking]. How much does our ranking
contribute to overall performance?

Dataset. We utilize the open-source DroidTask dataset, which
was previously used in the-state-of-the-art AutoDroid [15]. This

Hieu Huynh, Hai Phung, Hao Pham, Tien N. Nguyen, and Vu Nguyen

dataset comprises 13 Android applications, each accompanied by
an installation file and a set of task descriptions. These descrip-
tions are concise and unguided, providing goal-based tasks without
explicit instructions. Examples include tasks such as "Add contact
Bob to Favorites" and "Set app theme to light and save it". A total of
12 out of the 13 applications were successfully installed, while the
provided Firefox’s installation package could not be installed due
to its deprecation with Android API 34. Consequently, our experi-
mental analysis was conducted with VisiDroID and the baseline
approaches—on those 12 applications, covering a total of 150 tasks.

5 Effectiveness in Action Generation (RQ1)

5.1 Empirical Methodology

Setup. We set up a controlled environment using the Android
emulator from Android Studio. The emulator ran on a 64-bit Win-
dows 11 with an R7-7840HS CPU (8 cores) and 32GB memory. For
effectiveness and cost-efficiency, VisiDroid utilized GPT-4o (gpt-
40-2024-08-06) within its Action Selector (1)), Observer ((2)), and
Verifier ((3)). GPT-4 (gpt-4-turbo) was deployed in the Reflector
((4)) module to assess task failures and generate reflections.
Baselines. We compare VisiDrRoID with 3 LLM-powered task au-
tomation tools: AutoDroid [15], DroidAgent [18], and Guardian [32].
Metrics. For evaluation, we use the following metrics:

Exact-match. An action is considered as correct if it is required
to complete the task in the context of the app. A sequence that
contains all correct actions is evaluated as an exact-match sequence.
The percentage of Exact-match for all the tasks is calculated as:
% Exact-match = #Exact-match tasks.

#Tasks

Prefix-match. Prefix-match is calculated by determining the
proportion of correct actions from the beginning of the sequence up
to the first incorrect action. This metric reflects the percentage of
an action sequence prefix that can be reliably reused. Prefix-match
is reported as the average accuracy across all generated sequences.

Precision. If the prefix match of a sequence is zero (i.e., no
initial correct actions), precision is also defined as zero, as the
actions following an incorrect one are unlikely to be reusable within
the app’s context. Otherwise, the precision of a generated action
sequence for a task is calculated as the ratio of correct actions to
the total actions performed, representing how accurately a model
identifies the next required action. %Precision = %m.
Average Precision is the average precision across all sequences.

Task Completion. This metric evaluates a model’s ability to
complete a task at the correct final step. A task is considered as
completed if the goal of the task is achieved with the last correct
action in the generated sequence. This metric is less stringent than
Exact-match, allowing for additional actions in the middle of a
sequence (e.g., additional actions to go back and forth from a screen).

The percentage of task completion for all the sequences is defined

. #Completed tasks
as %Task Completion = T ¥Tasks "

Task Coverage. This metric evaluates a model’s ability to achieve
a task’s objective at covering the actions in a sequence. Task Cover-
age is less stringent than both Task Completion and Exact-match,
allowing for additional actions either in the middle or at the end

of a sequence. The percentage of task coverage for all sequences is
#Covered tasks

defined as %Task coverage = Z=>2=

Towards Test Generation from Task Description for Mobile Testing with Multi-modal Reasoning

Table 1: Effectiveness on Generating Sequence of Actions
(RQ1). Total number of tasks: 150.

Metric|Guardian DroidAgent AutoDroid|VisiDroIp
#Exact-match tasks 0 21 106 131
#Completed tasks 2 36 113 132
#Covered tasks 54 105 126 132
Exact-match (%) 0 14 70.7% 87.3%
Task Completion (%) 1.3 24 75.3% 88.0%
Task Coverage (%) 36 70 84% 88.0%
Prefix-match (%) 10.6 28.8 80.6% 90.5%
Precision (%) 21.2 39.8 87.2% 91.4%

The relationship between the metrics on the tasks can be repre-
sented as (Exact-match tasks C Completed tasks C Covered tasks),
indicating that Exact-match tasks are a subset of Completed tasks,
which in turn are a subset of Covered tasks.

5.2 Empirical Results

5.2.1 Result Analysis. Asseen in Table 1, the Exact-match metric
indicates that 87.3% of ViSIDROID’s generated action sequences fol-
low the correct path (without extra actions), indicating that almost
90% of produced sequences of actions can be directly used to produce
test scripts. The Prefix-match metric showcases VISIDROID’s ability
to accurately generate prefixes of action sequences, with an 90.5%
prefix-match rate. On average, 9/10 actions in a sequence are cor-
rectly reusable. Although AutoDroid has access to the app’s initial
context via UI Traverse Graph, VIsIDROID’s superior Prefix-match
underscores the effectiveness of its Long-Term Memory, which en-
ables the model to learn the optimal path from previous executions.

A sequence of actions is considered to cover a task (Covered
tasks) if it reaches the task’s objective, even if it includes some extra
post-completion actions. Among all methods, VisIDrRoID shows
the smallest gap between #Exact-Match tasks and #Covered tasks,
with 99% of covered tasks ending correctly (131/132). That is, in
131/132 tasks, VisIDRrRoID’s produced sequences end at the correct
final screens without extra post-completion actions. This shows the
benefit of multi-modal method with vision in finishing the task
correctly without extra actions (see Ablation study).

Precision reveals that 91.4% of actions generated are reusable.
That is, on average, 9 actions are correct and only one action is
extra in the middle of sequences of actions.

In comparison, VisIDroID outperforms all the baselines in all
five metrics in Table 1. VisIDROID improves relatively over the best
baseline AutoDroid by 23.5% in Exact-match. It results are also
significantly better than those of Guardian and DroidAgent.

5.22 Task Completion Comparison. AutoDroid [15] has failed
to complete 13 tasks, 8 of which were finished by VisiDroip. Its
limitations in task completion are acknowledged in their paper [15].
DroidAgent [18] shows the largest gap between #Covered tasks
and #Completed tasks, indicating that while it can reach the task
objective, it struggles with determining when to end in 13 tasks.
The LLM takes on both roles of determining the next action and
terminating the action loop, often overlooking when the goal has
already been achieved and unnecessarily continuing the loop.
Guardian [32] shows the least number of exact-match tasks, com-
pleted tasks, and covered tasks, with only 0, 2, and 54 respectively.

Conference’17, July 2017, Washington, DC, USA

VisiDroid: 132
DroidAgent: 36

71 Guardian: 2
AutoDroid: 113

Figure 5: Overlapping Analysis of Completed Tasks

This is because Guardian uses a rule with a fixed number of actions
(15 actions). Given that our dataset does not contain any tasks that
take exactly 15 steps, the Exact-match metric is understandably zero.
During our email communication with Guardian’s authors, they
acknowledged this limitation, which will be currently addressed
in their future work. The #Completed tasks metric is slightly more
relaxed than Exact-match. That metric allows agents to have ex-
cessive steps in the middle but requires them to end once the task
objective is reached. Thus, there are two tasks where Guardian ends
the tasks correctly (with extra steps in the middle).

5.2.3 Overlapping Analysis. Figure 5 provides a Venn diagram
for all results. VisiDrRoID completed 132/150 tasks, uniquely re-
solving 24 tasks in which none of the baseline approaches cor-
rectly finished. The best baseline (AutoDroid) completed correctly
9 unique tasks. VisIDRroOID shares 103 completed tasks with Auto-
Droid, and 33 with DroidAgent. This represents the relative im-
provements in Task completion over Guardian, DroidAgent, and
AutoDroid by 66.7X, 2.7X, and 16.9% respectively.

5.2.4 Further Analysis and Examples on Cases Uniquely
Detected by VisiDroip. We further investigated 24 tasks that
VisiDRroID uniquely handled to highlight the effectiveness of the
Multi-modal Verifier, particularly for tasks where visual images are
crucial for determining task completion. We report the following:

The first category consists of tasks that require changes in vi-
sual images within an app. For example, tasks like "Take a selfie
video" involve capturing a new video, which cannot be detected
solely through textual changes. Similar examples include "Switch
to front camera” and "Show a photo." The second category includes
tasks that result in appearance changes, such as "Switch to light
theme" or "Change to left alignment (for texts)." The third category
involves tasks related to configuration settings that use toggles
or radio buttons, e.g., "Turn Wi-Fi off", "Add a contact to favorites."
The fourth category covers tasks that involve small icon changes,
such as "Play a video/audio." or "Turn on word count". These four
categories, (12 tasks) share a common challenge: they involve vi-
sual changes that are difficult to detect through text alone. Since
these visual elements update on-screen without respective textual
changes, baseline models often fail by making incorrect actions,
such as switching the camera twice, toggling buttons multiple times,
or continuously pressing the playback button — ultimately leading
to task failure. In contrast, VisiDroID effectively recognized screen

Conference’17, July 2017, Washington, DC, USA

1.0 '\
——

_
0.8 ~
\\\
0.6 —=— VisiDroid \{

=
O
©
£ .
5 DroidAgent \ =
2 04 —— AutoDroid y
]
xR
0.2
0.0 e g

2 3 4 5 6 7 8 9 10 17
Task Length

Figure 6: Performance on Task Lengths

350k- -1.0
—e— VisiDroid
280k~ -0.8
8 | 5
5"}210k— 5 0.6 ¢
g |
S 140k- -04%
: R | | e
B
70k- -0.2
0- — EII:I.E ° I:IIII 200
S & A & P P2
I\ & O \'l} O 3 \@i \’bc’ (\6
\'Zr‘\o © <§>@o°@,§ b%& K ooQ db& »
R Fe F
? R

Figure 7: Performance on Action Spaces

changes through visual analysis, ensuring accurate task completion.
The last category involves the tasks requiring the use of multiple
apps, e.g., "Print image" and "Make call"). DroidAgent failed these
tasks because it focuses on a single app.

5.2.5 Limitations. The 9 tasks that VistDroIDp did not complete
correctly but AutoDroid did were mainly due to unclear task descrip-
tions. Some descriptions confuse a setting option with a command.
For example, the task "Send long messages as MMS" refers to a setting
that allows sending long messages as MMS instead of using SMS.
However, our agent misinterprets this as a command to send some
long messages as MMS, thus generating an action chain to send a
long message. AutoDroid, leveraging the UI graph, navigates to the
correct screen. This type of tasks accounts for 6 out of 9 cases.

5.2.6 Performance on Tasks with Different Lengths. We strat-
ified the results on the Exact-Match metric on all the best-performing
approaches across tasks of varying lengths (Figure 6). We exclude
Guardian in the graph due to its low Exact-Match. For tasks of
length 2 (i.e., two actions), both VisiIDro1D and AutoDroid achieve
100% Exact-match. As the task length increases to 3-17, VisIDROID
either outperforms or matches AutoDroid, demonstrating consis-
tent performance even in more complex tasks exceeding 10 steps.
For the cases of infeasible tasks (which do not exist in our dataset),
VisiDroip will stop at the pre-defined maximum number of actions.

5.2.7 Performance on Tasks with Different Action Spaces.
At each screen, there may exist multiple feasible actions. The action
space consists of all possible actions at all the screens for a task.
We aim to analyze how accurate VISIDROID performs when the action
space gets larger. In Figure 7, we report the action space for each
task and group them by application. The action space for each task
is calculated as A = (ag X a; X ... X ae), where ag is the number of

Hieu Huynh, Hai Phung, Hao Pham, Tien N. Nguyen, and Vu Nguyen

@
,\@‘OQ ‘ model
Il gpt-4o
\Q& *, I gpt4
N
d
0 10000 20000 30000

Number of Tokens
Figure 8: Token Count Analysis for VisiDroID

actions in the first state, and a, is the number of actions in the last
state. An increase in the action space A can be attributed to two
reasons: a complicated Ul at each state leading to a large a;, or a
complicated task, leading to a large e. Four apps—Contacts, Camera,
Calendar, and File Manager—exhibit large action spaces, with their
upper quartiles exceeding 100,000 possible actions. The tasks on
the other 9 apps have an average action space of 20,000.

As seen, despite complexity, VIsSIDROID maintains strong perfor-
mance on the File Manager app, achieving over 80% exact-match
accuracy with the largest action space. For Contacts, Camera, and
Calendar, we maintain an accuracy on exact-match higher than 65%
although the action spaces are 5x larger than other apps. This level
of accuracy in challenging scenarios highlights VisiDroIp’s
robustness when handling cases with large spaces of actions.

5.2.8 Token Count Analysis. Overall, the text input tokens are
much larger than the output tokens and image input tokens as re-
quired by VisiDroip. Thus, we conducted a cost analysis by mea-
suring tokens needed for OpenAI API for all tasks. The image input
tokens are the smallest, requiring only 85 tokens for each verifica-
tion in low-resolution mode of OpenAI API, and the median image
tokens among all tasks are around 500 tokens. Observer, Verifier,
and Reflector are the most costly components. Observer and Verifier
are called each time VisiIDroID interacts with the app under test, to
summarize what has changed and whether the task is completed.
Observer takes the Ul change list as input; therefore, whenever
the app navigates to another screen, all elements of the old screen
are replaced by the new one, resulting in a long change list and,
consequently, a large input token size. As for Reflector, although
the input and output tokens (not using image tokens) are relatively
small compared to those of GPT-4o, it uses GPT-4, which results in
a higher cost per token. On average, a task requires 13,419 input to-
kens (text + image), 1,670 output tokens for GPT-40, and 2,463 input
tokens, 337 output tokens for GPT-4. This shows that the cost for
image inputs is acceptable with the gain of higher performance.

6 Effectiveness in Test Script Generation (RQ2)

In this experiment, we aim to evaluate VisIDroID’s usefulness
in regression testing via generating test scripts from a generated
sequence of actions. From 150 sequences of actions derived from
RQ1, we generated 150 corresponding test scripts. All of them were
executed on the corresponding AUTs to verify whether they could
run successfully. We used as the ground truth the final screens from
the regression runs of the AUT. Although the test cases and scripts
are interpreted one-to-one from the action sequences, they may
fail during the execution due to various reasons such as flakiness
[33]. A successfully executed test script requires (1) the successful

Towards Test Generation from Task Description for Mobile Testing with Multi-modal Reasoning

Table 2: Success Rates of Test Scripts generated by VisiDrRoID

Test scripts for
All tasks
Completed tasks
Exact-match tasks

Successful execution (%)
108/150 =72.0%
108/132 =81.8%
100/131 = 82.4%

1

2 d = appium.driver()

3 d.find_element(content_desc, "New Event").click()
4 d.find_element(text, "Title").fill("VisitParents")
5 d.find_element(id, ".date_picker").click()

6 d.find_element(text, "Prev month").click()

7 d.find_element(text, "Prev month").click()

8 d.find_element(text, "30").click()

9 d.find_element(text, "OK").click()

10 d.find_element(text, "10 minutes before").click()
11 d.find_element(text, "1 hour before").click()

12 d.find_element(content_desc, "Save").click()

Figure 9: Test script for adding event to Calendar app

1

2 d = appium.driver()

3 d.find_element(text, "More options").click()

4 d.find_element(text, "Export contacts to file").click()

5 d.find_element(text, "contacts_2024_09_12_19_17_15").fill("classmate.vcf")
6 d.find_element(text, "OK").click()

7 d.find_element(text, "Save").click()

Figure 10: Test script for exporting contacts in Contacts

execution of all test steps and (2) achieving the testing goal by
the end of the script. Therefore, only a sequence of actions from a
completed task or an exact match can meet the second requirement.

In total, without human intervention, we have 108 successfully
executed test scripts out of 150 tasks, marking a success rate of 72%.
These 108 successful test scripts come from 132 completed tasks,
resulting in a success rate of 81.8% for completed tasks. If we only
generate test scripts for exact-match sequences, the success rate
remains nearly 82%. For action sequences of completed tasks, there
are 24 non-executable test scripts (132-108), while for exact-match
sequences, there are 23 non-executable test scripts (118-131).

Several reasons contribute to test inexecutability as we explain
in the following cases. The dynamic factor (e.g., time) is one reason
of test script inexecutability, affecting the element names and root
location of the date picker. In Figure 9, we show the test script
generated for the task "add the event of "VisitParents’ on July 30,
remind me 1 hour before, save it". This task requires the agent to
interact with a date picker to navigate to July 30 from the current
day. However, the date when generating the sequence of actions
is different from that of executing the test script, thus, following
the generated sequence led to an incorrect date. Although this is
an exact-match sequence and all 10 steps can be executed, the task
goals were not reached at the end, resulting in a failed script.

The second case is demonstrated in Figure 10, where the task
is to export all contacts under the Contacts app to a file. While
executing the script, the test case failed at Line 5, where it finds
a text box with the text "contacts 2024 09 12 19 17 15", which is
dynamic due to the current timestamp of the system. Therefore,
the test driver cannot find such a text box, leading to a test failure.

Conference’17, July 2017, Washington, DC, USA

Apart from the time factor, UI delay or unexpected popups also con-
tribute to test inexecutability. Especially for apps that require load-
ing a large amount of UI resources, such as File Manager, Gallery,
and Camera, Ul delays often occur. Those issues can be resolved by
applying auto-healing, smart-wait features from test environments.

7 Ablation Study (RQ3-RQ5)

We aim to evaluate the key design components in VisiDroID: 1)
Persistent Memory, 2) Multi-modal Verifier, and 3) Sequence Ranking.
To achieve this, we build three additional variants of VisiDroID:
VisiDroIp without Persistent Memory (No-mem), VIsIDROID with-
out Multi-modal Verifier (No-vis), and VisIDroID without Sequence
Ranking (No-rank). The results for these variants are in Table 3. We
used the same metrics as in RQ1, with an additional one: #Premature
tasks, which measures the number of tasks that did not reach the
task objectives but were terminated prematurely by the model.

7.1 Ablation on Persistent Memory (RQ3)

Table 3: Contributions of VisiDRoOID’s components

Metric | VisiDroid | No-mem No-vis No-rank
#Exact-match tasks 131 79 (-52) 108 (-23) 321
#Completed tasks 132 89 (-43) 111 (-21) 341
#Covered tasks 132 92 (-40) 113 (-19) -
#Premature Tasks 5 29 (+24) 14 (+9) -
#Total Tasks 150 150 150 450 (x3)
Exact-match(%) 87.3 | 52.7 (-34.6) 72.0 (-153) 71.3 (-16.0)
Task Completion(%) 88.0 | 59.3 (-28.7) 74.0 (-14.0) 75.8 (-12.2)
Prefix-match(%) 905 | 67.3 (-23.2) 82.0 (-8.5) -
Precision(%) 91.4|73.0(-18.4) 84.2(-7.2) -

VisiDroip without Persistent Memory (VISIDROID-mem) is imple-
mented by discarding No-Mem and Reflector module (4) from Figure 2
and the experience section (Line 10) in the prompt of Figure 3. That
is, No-Mem does not require training; every task is run independently
three times without training. The rest of the design is retained.

As seen, Persistent Memory contributes significantly to accuracy.
Without it, the percentage of exact-match tasks drops by 34.6% (52
fewer tasks), and the task completion rate drops by 28.7% (43 fewer
tasks). Our investigation shows that in 24 out of these 52 cases,
tasks ended prematurely without achieving the objective due to
the absence of persistent memory. Failures typically occur because
the model skips confirmation steps, e.g., clicking "Save” or "Ok"
after modifying settings, which are essential for task completion.
During training, the model gains experience on such tasks, which
enhances performance in the evaluation phase. Experiences such as
"Always confirm changes by tapping the "Save’ button to apply new
settings" are generated by the LLM and stored in Persistent Memory
for future predictions on similar tasks.

Apart from experience rules, Persistent Memory also provides a
set of optimized steps, which drive the evaluation phase to precisely
address the task goal. Without these optimized steps, the agent
struggles to decide the correct actions, as seen in Prefix-match and
Precision, where Prefix-match experiences a downgrade of 23.3%.

Conference’17, July 2017, Washington, DC, USA

7.2 Ablation of Multi-Modal Verifier (RQ4)

For the variant in this case, we omit the image input from Figure 4,
leaving the verifying prompt with only four textual inputs: the
goal, previous actions, observations, and persistent memory. This
transforms the Multi-modal Verifier into a purely text-based verifier.
As seen in Table 3, removing the image input reduces both task
completeness and proper task ending. This change increases the
gap between #Covered tasks and #Exact-match tasks (from 1 to 5),
indicating that more tasks fail to end correctly without vision.

Most of those cases occur in where the task causes a Ul change.
For example, tasks like "take a short selfie video" during RQ1 analysis
could only be resolved by VisiDroibp. In this case, No-vis failed by
repeatedly pressing the shutter button. Similarly, tasks like “change
the alignment to center”, which result in direct UI changes, encounter
the same problem. In contrast, visual images are useful in detecting
those changes. The absence of vision capacity in No-vis also affects
task completeness, leading to premature task endings in 14 cases.
See Section 5.2.4 for more case studies where visual analysis helps.

Importantly, even without vision, No-vis achieves slightly better
Exact-match than the best baseline, AutoDroid. This shows the higher
effectiveness of memory-powered iterative action sequence generation.
Our multi-modal analysis also improves further over the baselines.

7.3 Ablation of Sequence Ranking (RQ5)

We run the model 3 times independently for each task, which results
in 150x3 tasks, then the we use the Sequence ranking to rank those
3 solutions and choose the best. The results for VistDroID-rank are
in Table 3. Ablating Sequence Ranking results in more solutions
are selected and less efficient. Sequence ranking contributes to 16%
of Exact-match and 12.2% of Task Completion. Without it, more
incorrect sequences require manual validation, tripling labor cost.

8 Threats to Validity

Our dataset may not represent typical Android apps. Our analysis
shows that the dataset has a diverse set of Android apps varying in
task length and action space. The dataset used in our experiments
consists of 12 apps that occasionally exhibited instability when
running on the simulator during the training, evaluation, and test
execution phases. In our experiment, if a crash occurred, the execu-
tion was retried. During the test execution phase when test scripts
were executed using Appium, the test execution encountered flaki-
ness issues such as the instability of Appium, UI loading time, and
changes in the states of the AUT [33]. Hallucination of the LLM is
another threat to validity, affecting the consistency and accuracy
of our study. To reduce hallucination, we set the temperature at
zero, reran the test cases several times, and manually examined
all test cases to verify whether they are valid. Several test cases
failed during execution due to flakiness, but they turned out to be
valid. Different wording in a prompt might lead to different results,
but the LLM was fairly robust in our experiments. We used GPT-4
for a fair comparison with the baselines using the same model. To
address potential generalizability concerns, we designed prompts
that are compatible with various LLMs and made them publicly
available.

Hieu Huynh, Hai Phung, Hao Pham, Tien N. Nguyen, and Vu Nguyen

9 Related Work

Android GUI Testing. Our work is closely related to the following
GUI testing approaches. GPTDroid [26] treats mobile GUI testing as
a Q & A task, using GPT-3 to predict the next action based on static
GUI context and dynamic testing context. AutoDroid [15] employs
a two-phase exploration strategy: offline random exploration builds
a Ul Transition Graph, which guides autonomous action planning
during the online phase. DroidAgent [18] is an autonomous test
agent that generates and executes tasks independently using a
planner and an actor. The planner sets a task, and the actor executes
actions until the task goal is reached or an action limit is met. For
evaluating DroidAgent on natural language tasks, we adapted its
input to focus on one task goal at a time, halting the planner after
task completion. Guardian [32] is an external runtime framework
that integrates domain-specific knowledge, managing interactions
between the LLM and the AUT. It lacks visual representations.

In comparison, all the above approaches struggle with identifying
the final action, and either end prematurely or continue past the
final screen. In VisiDroiD, for Android GUI apps, several visual
cues and changes can indicate task completion, e.g., changes in
the visual GUI elements. First, GPTDroid has an LLM chat with
the mobile apps by passing the GUI page information to LLM, and
builds a specialized neural network to decode the LLM’s output
into actionable steps. We excluded GPTDroid from comparisons
because it does not fit with the usage scenario of VisiDroip, which
works with a testing environment. Second, VisiDroID distinguishes
itself from AutoDroid [15] and DroidAgent [18], which rely on
autonomous planning strategies with LLM-based planners. Instead,
VisiDRroID employs an iterative approach, Third, Guardian [32] also
leverages LLM’s reasoning capabilities but focuses on refining the
action space for better re-planning. Guardian has set a fixed number
of actions (15), thus struggling with task completion decision.

Test Generation and LLMs. For unit testing, several studies
propose white-box solutions for test script generation [7, 20, 29, 31].
ML-powered automation solutions are also employed to enhance
various aspects of API testing, e.g., generating test cases [8, 30, 36]
and realistic test inputs [5]. In the GUI test generation, Google’s
Monkey tool employs a strategy based on random app exploration
[13]. Humanoid [21] represents a learning-based strategy. Model-
based strategies are also utilized [6]. Advancements in LLMs have
facilitated various tasks, including code generation [11, 14, 24, 34],
automated program repair [17, 38, 39, 41, 43], and testing [16, 18,
25, 32]. GUI testing has utilized LLMs for test case generation [18,
20, 27, 28], test inputs [25], and bug reproduction [12].

10 Conclusion

Novelty. We present VisiDRroID, a multi-modal mobile testing frame-
work utilizing LLMs with vision capabilities to generate test scripts
from GUI tasks described in natural language. We found that visual
changes and cues are commonly used to indicate task completeness
in GUI applications, whereas DOM or text content does not always
accurately reflect the layout. Moreover, relying solely on textual
signals can lead to errors, such as prematurely concluding a task
when an earlier screen contains text that misleadingly resembles
that of the final screen. Evaluation on 150 goal-based tasks across
12 Android apps shows its superior performance over the baselines.

Towards Test Generation from Task Description for Mobile Testing with Multi-modal Reasoning

From sequences of actions to perform tasks, VisIDRoID generates
test scripts, effectively converting task descriptions into automated
regression tests. As a practical implication, it enables testers to
efficiently generate automated test scripts from end-user task de-
scriptions, potentially replacing the current practice of recording
the tester’s actions in the GUI and writing test cases manually. It
also facilitates the process of generating test cases and scripts from
requirement specifications with minimal human involvement.

Impacts on Future Research. This work provides evidence for

the advantages of multi-model analysis by combining textual and
visual components for test generation, suggesting several future
research directions in software testing. One future avenue is auto-
mated GUI bug detection, where models analyze inconsistencies
between expected textual outputs and actual visual renderings to
identify Ul issues such as misaligned elements, overlapping text,
or inaccessible components. Using multi-modal analysis for au-
tomated generation of test oracles is important towards more
autonomous testing where tester’s involvements in the testing ac-
tivities are reduced. Deciding whether a functionality performs well
is taken at least partially by models. Another direction is adaptive
GUI test case generation, where multi-modal LLMs dynamically
adjust test cases based on visual changes, ensuring robust testing
even when Ul layouts evolve. User experience evaluation lever-
ages LLMs to assess GUI usability by detecting visual clutter, poor
contrast, or inefficient navigation flows. Finally, visual reasoning
for automated accessibility testing could enhance inclusivity by
detecting color contrast violations, improper screen reader support, or
missing alt texts, ensuring compliance with accessibility standards.

Data Availability. Our data and code are available at [4].

Conference’17, July 2017, Washington, DC, USA

References
[1] 2024. Appium. https://appium.io

2024. Espresso. https://developer.android.com/training/testing/espresso

2024. Katalon Studio Automation Testing Tool. https://katalon.com/

2025. VisiDroid. https://github.com/visidroid/visidroid

Juan C Alonso, Alberto Martin-Lopez, Sergio Segura, Jose Maria Garcia, and
Antonio Ruiz-Cortes. 2022. ARTE: Automated Generation of Realistic Test Inputs
for Web APIs. IEEE Transactions on Software Engineering 49, 1 (2022), 348-363.
Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Bryan Dzung
Ta, and Atif M Memon. 2014. MobiGUITAR: Automated model-based testing of
mobile apps. IEEE Software 32, 5 (2014), 53-59.

Andrea Arcuri, Gordon Fraser, and Juan Pablo Galeotti. 2014. Automated unit
test generation for classes with environment dependencies. In Proceedings of
the 29th ACM/IEEE international conference on Automated software engineering.
79-90.

Vaggelis Atlidakis, Patrice Godefroid, and Marina Polishchuk. 2019. Restler:
Stateful rest api fuzzing. In 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). IEEE, 748-758.

Cucumber [n.d.]. Cucumber. https://cucumber.io/docs/gherkin/.

Gustavo da Silva and Ronnie de Souza Santos. 2023. Comparing Mobile Testing
Tools Using Documentary Analysis. In 2023 ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM). 1-6. doi:10.1109/
ESEM56168.2023.10304798

Yihong Dong, Xue Jiang, Zhi Jin, and Ge Li. 2024. Self-collaboration code genera-
tion via chatgpt. ACM Transactions on Software Engineering and Methodology 33,
7 (2024), 1-38.

Sidong Feng and Chunyang Chen. 2024. Prompting Is All You Need: Automated
Android Bug Replay with Large Language Models. In Proceedings of the IEEE/ACM
46th International Conference on Software Engineering (Lisbon, Portugal) (ICSE '24).
Association for Computing Machinery, New York, NY, USA, Article 67, 13 pages.
doi:10.1145/3597503.3608137

Google. 2022. https://developer.android.com/studio/test/other-testing-
tools/monkey.

Qiuhan Gu. 2023. Llm-based code generation method for golang compiler testing.
In Proceedings of the 31st ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. 2201-2203.

Hao, Yuanchun Wen, Guohong Li, Shanhui Liu, Tao Zhao, Toby Yu, Shiqi Jia-
Jun Li, Yunhao Jiang, Yaqin Liu, Yunxin Zhang, and Liu. 2023. Empowering LLM
to use Smartphone for Intelligent Task Automation. arXiv:2308.15272 (2023).
Hieu Huynh, Quoc-Tri Le, Tien N. Nguyen, and Vu Nguyen. 2024. Using LLM
for Mining and Testing Constraints in API Testing. In Proceedings of the 39th
IEEE/ACM International Conference on Automated Software Engineering (Sacra-
mento, CA, USA) (ASE "24). Association for Computing Machinery, New York,
NY, USA, 2486-2487. doi:10.1145/3691620.3695341

Matthew Jin, Syed Shahriar, Michele Tufano, Xin Shi, Shuai Lu, Neel Sundaresan,
and Alexey Svyatkovskiy. 2023. Inferfix: End-to-end program repair with llms.
In Proceedings of the 31st ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. 1646-1656.

Juyeon, Robert Yoon, Shin Feldt, and Yoo. 2023. Autonomous Large Language
Model Agents Enabling Intent-Driven Mobile GUI Testing. arXiv:2311.08649v1
(2023).

Wing Lam, Zhengkai Wu, Dengfeng Li, Wenyu Wang, Haibing Zheng, Hui Luo,
Peng Yan, Yuetang Deng, and Tao Xie. 2017. Record and replay for android: Are
we there yet in industrial cases?. In Proceedings of the 2017 11th joint meeting on
foundations of software engineering. 854-859.

Caroline Lemieux, Jeevana Priya Inala, Shuvendu K Lahiri, and Siddhartha Sen.
2023. Codamosa: Escaping coverage plateaus in test generation with pre-trained
large language models. In 2023 IEEE/ACM 45th International Conference on Soft-
ware Engineering (ICSE). IEEE, 919-931.

Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2019. Humanoid: A
deep learning-based approach to automated black-box android app testing. In
2019 34th IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 1070-1073.

Mario Linares-Vasquez, Kevin Moran, and Denys Poshyvanyk. 2017. Continuous,
evolutionary and large-scale: A new perspective for automated mobile app testing.
In 2017 IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 399-410.

Mario Linares-Vasquez, Carlos Bernal-Cardenas, Kevin Moran, and Denys Poshy-
vanyk. 2017. How do Developers Test Android Applications?. In 2017 IEEE In-
ternational Conference on Software Maintenance and Evolution (ICSME). 613-622.
doi:10.1109/ICSME.2017.47

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. 2024. Is your
code generated by chatgpt really correct? rigorous evaluation of large language
models for code generation. Advances in Neural Information Processing Systems
36 (2024).

https://appium.io
https://developer.android.com/training/testing/espresso
https://katalon.com/
https://github.com/visidroid/visidroid
https://doi.org/10.1109/ESEM56168.2023.10304798
https://doi.org/10.1109/ESEM56168.2023.10304798
https://doi.org/10.1145/3597503.3608137
https://doi.org/10.1145/3691620.3695341
https://doi.org/10.1109/ICSME.2017.47

Conference’17, July 2017, Washington, DC, USA

[25

[26

[27

[28]

[29]

[30

[31

[32]

[33]

Zhe Liu, Chunyang Chen, Junjie Wang, Xing Che, Yuekai Huang, Jun Hu, and
Qing Wang. 2022. Fill in the blank: Context-aware automated text input genera-
tion for mobile gui testing. arXiv preprint arXiv:2212.04732 (2022).

Zhe Liu, Chunyang Chen, Junjie Wang, Mengzhuo Chen, Boyu Wu, Xing Che,
Dandan Wang, and Qing Wang. 2023. Chatting with GPT-3 for Zero-Shot Human-
Like Mobile Automated GUI Testing. arXiv:2305.09434 [cs.SE] https://arxiv.org/
abs/2305.09434

Zichuan Liu, Chao Chen, Jianing Wang, Mingming Chen, Bin Wu, Xiaopeng
Che, Dan Wang, and Qiang Wang. 2023. Chatting with GPT-3 for Zero-Shot
Human-Like Mobile Automated GUI Testing. arXiv preprint arXiv:2305.09434
(2023).

Zhe Liu, Chunyang Chen, Junjie Wang, Mengzhuo Chen, Boyu Wu, Xing Che,
Dandan Wang, and Qing Wang. 2024. Make llm a testing expert: Bringing
human-like interaction to mobile gui testing via functionality-aware decisions. In
Proceedings of the IEEE/ACM 46th International Conference on Software Engineering.
1-13.

Stephan Lukasczyk and Gordon Fraser. 2022. Pynguin: Automated unit test gen-
eration for python. In Proceedings of the ACM/IEEE 44th International Conference
on Software Engineering: Companion Proceedings. 168-172.

Alberto Martin-Lopez, Sergio Segura, and Antonio Ruiz-Cortés. 2021. RESTest:
Automated Black-Box Testing of RESTful Web APIs. In Proceedings of the 30th
ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA
"21). Association for Computing Machinery.

Shabnam Mirshokraie, Ali Mesbah, and Karthik Pattabiraman. 2015. Jseft: Auto-
mated javascript unit test generation. In 2015 IEEE 8th international conference on
software testing, verification and validation (ICST). IEEE, 1-10.

Dezhi Ran, Hao Wang, Zihe Song, Mengzhou Wu, Yuan Cao, Ying Zhang, Wei
Yang, and Tao Xie. 2024. Guardian: A Runtime Framework for LLM-Based UI
Exploration. In Proceedings of the 33rd ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA 2024). Association for Computing Machinery,
New York, NY, USA, 958-970. doi:10.1145/3650212.3680334

Alan Romano, Zihe Song, Sampath Grandhi, Wei Yang, and Weihang Wang. 2021.
An empirical analysis of Ul-based flaky tests. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). IEEE, 1585-1597.

(34

[35

[36

[38

[39

[40

[42

[43

]

]

Hieu Huynh, Hai Phung, Hao Pham, Tien N. Nguyen, and Vu Nguyen

Gabriel Ryan, Siddhartha Jain, Mingyue Shang, Shiqi Wang, Xiaofei Ma, Mu-
rali Krishna Ramanathan, and Baishakhi Ray. 2024. Code-aware prompting: A
study of coverage-guided test generation in regression setting using llm. Pro-
ceedings of the ACM on Software Engineering 1, FSE (2024), 951-971.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. 2024. Reflexion: Language agents with verbal reinforcement learning.
Advances in Neural Information Processing Systems 36 (2024).

Emanuele Viglianisi, Michael Dallago, and Mariano Ceccato. 2020. Resttest-
gen: automated black-box testing of restful apis. In 2020 IEEE 13th International
Conference on Software Testing, Validation and Verification (ICST). IEEE, 142-152.
Hao Wen, Yuanchun Li, Guohong Liu, Shanhui Zhao, Tao Yu, Toby Jia-Jun
Li, Shiqi Jiang, Yunhao Liu, Yagin Zhang, and Yunxin Liu. 2023. AutoDroid:
LLM-powered Task Automation in Android. Proceedings of the 30th Annual
International Conference on Mobile Computing and Networking (2023). https:
//api.semanticscholar.org/CorpusID:261277501

Chungqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. 2023. Automated
program repair in the era of large pre-trained language models. In 2023 IEEE/ACM
45th International Conference on Software Engineering (ICSE). IEEE, 1482-1494.
Chungqiu Steven Xia and Lingming Zhang. 2024. Automated program repair
via conversation: Fixing 162 out of 337 bugs for $0.42 each using chatgpt. In
Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing
and Analysis. 819-831.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan,
and Yuan Cao. 2023. ReAct: Synergizing Reasoning and Acting in Language
Models. In International Conference on Learning Representations (ICLR).

Xin Yin, Chao Ni, Shaohua Wang, Zhenhao Li, Limin Zeng, and Xiaohu Yang.
2024. Thinkrepair: Self-directed automated program repair. In Proceedings of the
33rd ACM SIGSOFT International Symposium on Software Testing and Analysis.
1274-1286.

Juyeon Yoon, Robert Feldt, and Shin Yoo. 2023. Autonomous Large
Language Model Agents Enabling Intent-Driven Mobile GUI Testing.
arXiv:2311.08649 [cs.SE] https://arxiv.org/abs/2311.08649

Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury. 2024. Au-
tocoderover: Autonomous program improvement. In Proceedings of the 33rd ACM
SIGSOFT International Symposium on Software Testing and Analysis. 1592-1604.

https://arxiv.org/abs/2305.09434
https://arxiv.org/abs/2305.09434
https://arxiv.org/abs/2305.09434
https://doi.org/10.1145/3650212.3680334
https://api.semanticscholar.org/CorpusID:261277501
https://api.semanticscholar.org/CorpusID:261277501
https://arxiv.org/abs/2311.08649
https://arxiv.org/abs/2311.08649

	Abstract
	1 Introduction
	2 Motivation
	2.1 Key Ideas
	2.2 VisiDroid Overview

	3 Iterative Action Sequence Generation
	3.1 VisiDroid Algorithm
	3.2 Memories and Training
	3.3 Candidate Ranking and Test Generation

	4 Empirical Evaluation
	5 Effectiveness in Action Generation (RQ1)
	5.1 Empirical Methodology
	5.2 Empirical Results

	6 Effectiveness in Test Script Generation (RQ2)
	7 Ablation Study (RQ3–RQ5)
	7.1 Ablation on Persistent Memory (RQ3)
	7.2 Ablation of Multi-Modal Verifier (RQ4)
	7.3 Ablation of Sequence Ranking (RQ5)

	8 Threats to Validity
	9 Related Work
	10 Conclusion
	References

